开源项目GNN Benchmark使用教程
2024-08-18 02:10:16作者:俞予舒Fleming
项目介绍
GNN Benchmark是一个用于评估图神经网络(GNN)性能的开源项目。该项目提供了多种图神经网络模型的实现,并支持多种图数据集,旨在帮助研究人员和开发者快速测试和比较不同GNN模型的性能。
项目快速启动
环境准备
首先,确保你已经安装了Python和必要的依赖库。可以通过以下命令安装所需的Python库:
pip install -r requirements.txt
下载项目
使用以下命令从GitHub下载项目:
git clone https://github.com/shchur/gnn-benchmark.git
cd gnn-benchmark
运行示例
以下是一个简单的示例,展示如何运行一个GNN模型进行图分类任务:
import torch
from models import GCN
from datasets import load_data
# 加载数据集
data = load_data('Cora')
# 定义模型
model = GCN(nfeat=data.num_features, nhid=16, nclass=data.num_classes, dropout=0.5)
# 定义优化器
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
# 训练模型
model.train()
for epoch in range(200):
optimizer.zero_grad()
output = model(data.x, data.edge_index)
loss = F.nll_loss(output[data.train_mask], data.y[data.train_mask])
loss.backward()
optimizer.step()
应用案例和最佳实践
应用案例
GNN Benchmark项目可以应用于多个领域,包括社交网络分析、生物信息学、推荐系统等。例如,在社交网络分析中,可以使用GNN模型来预测用户之间的关系或识别社区结构。
最佳实践
- 数据预处理:确保图数据集的预处理步骤正确,包括节点特征的归一化和图结构的规范化。
- 模型选择:根据具体任务选择合适的GNN模型,如GCN、GAT、GraphSAGE等。
- 超参数调优:使用网格搜索或随机搜索方法对模型的超参数进行调优,以获得最佳性能。
典型生态项目
GNN Benchmark项目与其他图神经网络相关的开源项目紧密结合,形成了一个丰富的生态系统。以下是一些典型的生态项目:
- PyTorch Geometric:一个基于PyTorch的图神经网络库,提供了丰富的图数据结构和GNN模型实现。
- DGL (Deep Graph Library):一个用于图神经网络的高效且灵活的库,支持多种图神经网络模型和算法。
- Spektral:一个基于Keras的图神经网络库,提供了易于使用的API和丰富的图数据处理工具。
通过结合这些生态项目,可以进一步扩展和优化GNN Benchmark项目的功能和性能。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
终极Emoji表情配置指南:从config.yaml到一键部署全流程如何用Aider AI助手快速开发游戏:从Pong到2048的完整指南从崩溃到重生:Anki参数重置功能深度优化方案 RuoYi-Cloud-Plus 微服务通用权限管理系统技术文档 GoldenLayout 布局配置完全指南 Tencent Cloud IM Server SDK Java 技术文档 解决JumpServer v4.10.1版本Windows发布机部署失败问题 最完整2025版!SeedVR2模型家族(3B/7B)选型与性能优化指南2025微信机器人新范式:从消息自动回复到智能助理的进化之路3分钟搞定!团子翻译器接入Gemini模型超详细指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
392
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
878
582
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
164
暂无简介
Dart
765
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350