开源项目GNN Benchmark使用教程
2024-08-18 14:52:12作者:俞予舒Fleming
项目介绍
GNN Benchmark是一个用于评估图神经网络(GNN)性能的开源项目。该项目提供了多种图神经网络模型的实现,并支持多种图数据集,旨在帮助研究人员和开发者快速测试和比较不同GNN模型的性能。
项目快速启动
环境准备
首先,确保你已经安装了Python和必要的依赖库。可以通过以下命令安装所需的Python库:
pip install -r requirements.txt
下载项目
使用以下命令从GitHub下载项目:
git clone https://github.com/shchur/gnn-benchmark.git
cd gnn-benchmark
运行示例
以下是一个简单的示例,展示如何运行一个GNN模型进行图分类任务:
import torch
from models import GCN
from datasets import load_data
# 加载数据集
data = load_data('Cora')
# 定义模型
model = GCN(nfeat=data.num_features, nhid=16, nclass=data.num_classes, dropout=0.5)
# 定义优化器
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
# 训练模型
model.train()
for epoch in range(200):
optimizer.zero_grad()
output = model(data.x, data.edge_index)
loss = F.nll_loss(output[data.train_mask], data.y[data.train_mask])
loss.backward()
optimizer.step()
应用案例和最佳实践
应用案例
GNN Benchmark项目可以应用于多个领域,包括社交网络分析、生物信息学、推荐系统等。例如,在社交网络分析中,可以使用GNN模型来预测用户之间的关系或识别社区结构。
最佳实践
- 数据预处理:确保图数据集的预处理步骤正确,包括节点特征的归一化和图结构的规范化。
- 模型选择:根据具体任务选择合适的GNN模型,如GCN、GAT、GraphSAGE等。
- 超参数调优:使用网格搜索或随机搜索方法对模型的超参数进行调优,以获得最佳性能。
典型生态项目
GNN Benchmark项目与其他图神经网络相关的开源项目紧密结合,形成了一个丰富的生态系统。以下是一些典型的生态项目:
- PyTorch Geometric:一个基于PyTorch的图神经网络库,提供了丰富的图数据结构和GNN模型实现。
- DGL (Deep Graph Library):一个用于图神经网络的高效且灵活的库,支持多种图神经网络模型和算法。
- Spektral:一个基于Keras的图神经网络库,提供了易于使用的API和丰富的图数据处理工具。
通过结合这些生态项目,可以进一步扩展和优化GNN Benchmark项目的功能和性能。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
464
3.45 K
Ascend Extension for PyTorch
Python
272
310
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
192
79
暂无简介
Dart
714
171
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
844
424
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
120
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692