开源项目GNN Benchmark使用教程
2024-08-18 04:00:50作者:俞予舒Fleming
项目介绍
GNN Benchmark是一个用于评估图神经网络(GNN)性能的开源项目。该项目提供了多种图神经网络模型的实现,并支持多种图数据集,旨在帮助研究人员和开发者快速测试和比较不同GNN模型的性能。
项目快速启动
环境准备
首先,确保你已经安装了Python和必要的依赖库。可以通过以下命令安装所需的Python库:
pip install -r requirements.txt
下载项目
使用以下命令从GitHub下载项目:
git clone https://github.com/shchur/gnn-benchmark.git
cd gnn-benchmark
运行示例
以下是一个简单的示例,展示如何运行一个GNN模型进行图分类任务:
import torch
from models import GCN
from datasets import load_data
# 加载数据集
data = load_data('Cora')
# 定义模型
model = GCN(nfeat=data.num_features, nhid=16, nclass=data.num_classes, dropout=0.5)
# 定义优化器
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
# 训练模型
model.train()
for epoch in range(200):
optimizer.zero_grad()
output = model(data.x, data.edge_index)
loss = F.nll_loss(output[data.train_mask], data.y[data.train_mask])
loss.backward()
optimizer.step()
应用案例和最佳实践
应用案例
GNN Benchmark项目可以应用于多个领域,包括社交网络分析、生物信息学、推荐系统等。例如,在社交网络分析中,可以使用GNN模型来预测用户之间的关系或识别社区结构。
最佳实践
- 数据预处理:确保图数据集的预处理步骤正确,包括节点特征的归一化和图结构的规范化。
- 模型选择:根据具体任务选择合适的GNN模型,如GCN、GAT、GraphSAGE等。
- 超参数调优:使用网格搜索或随机搜索方法对模型的超参数进行调优,以获得最佳性能。
典型生态项目
GNN Benchmark项目与其他图神经网络相关的开源项目紧密结合,形成了一个丰富的生态系统。以下是一些典型的生态项目:
- PyTorch Geometric:一个基于PyTorch的图神经网络库,提供了丰富的图数据结构和GNN模型实现。
- DGL (Deep Graph Library):一个用于图神经网络的高效且灵活的库,支持多种图神经网络模型和算法。
- Spektral:一个基于Keras的图神经网络库,提供了易于使用的API和丰富的图数据处理工具。
通过结合这些生态项目,可以进一步扩展和优化GNN Benchmark项目的功能和性能。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0313- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
868
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
272
311

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
373

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
599
58

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3