3D卷积神经网络:跨模态音频-视觉识别项目推荐
2024-09-19 04:28:39作者:仰钰奇
lip-reading-deeplearning
:unlock: Lip Reading - Cross Audio-Visual Recognition using 3D Architectures
项目介绍
本项目名为“Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks”,由TensorFlow开发,旨在通过3D卷积神经网络实现跨模态的音频-视觉匹配识别。项目基于Amirsina Torfi等人的论文《3D Convolutional Neural Networks for Cross Audio-Visual Matching Recognition》,提供了一个高效的音频-视觉匹配解决方案,特别适用于唇语识别等应用场景。
项目技术分析
核心技术
- 3D卷积神经网络(3D CNN):项目采用3D卷积神经网络,能够同时处理空间和时间信息,有效捕捉音频和视觉数据中的时空特征。
- 跨模态匹配:通过耦合的3D CNN架构,将音频和视觉数据映射到一个共同的表示空间,评估两者之间的对应关系。
- 特征提取:项目使用SpeechPy包提取语音特征,并通过dlib库进行面部跟踪和嘴部区域提取,生成输入特征立方体。
技术实现
- 输入管道:用户需自行准备输入数据,项目代码提供了一个示例输入管道,用于处理语音和视觉数据。
- 训练与评估:项目提供了训练和评估脚本,用户可以通过执行
train.py和test.py文件进行模型训练和评估。
项目及技术应用场景
应用场景
- 唇语识别:通过分析视频中的唇部运动与音频的对应关系,实现唇语识别,适用于嘈杂环境下的语音识别任务。
- 多说话人场景:在多说话人环境中,通过视觉信息辅助音频识别,提高说话人验证的准确性。
- 跨模态数据分析:适用于需要结合音频和视觉信息进行分析的场景,如安防监控、人机交互等。
项目特点
技术优势
- 高效性:通过3D卷积神经网络,项目能够在较小的网络架构和数据集上超越现有方法的性能。
- 灵活性:用户可以根据自己的需求定制输入管道,适应不同的数据处理需求。
- 开源性:项目代码完全开源,用户可以自由修改和扩展,满足个性化需求。
实际效果
项目在音频-视觉匹配任务中表现出色,特别是在唇语识别方面,能够有效提高识别准确率。通过提供的训练和评估脚本,用户可以快速上手,验证模型效果。
总结
本项目通过创新的3D卷积神经网络架构,为跨模态音频-视觉识别提供了一个高效、灵活的解决方案。无论是学术研究还是实际应用,该项目都具有极高的参考价值和实用意义。欢迎广大开发者和技术爱好者使用并贡献代码,共同推动音频-视觉识别技术的发展。
项目地址: GitHub
论文链接: IEEE Xplore
作者主页: Amirsina Torfi
lip-reading-deeplearning
:unlock: Lip Reading - Cross Audio-Visual Recognition using 3D Architectures
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134