Lip Reading - Cross Audio-Visual Recognition using 3D Architectures 项目教程
2024-09-15 16:31:38作者:邵娇湘
lip-reading-deeplearning
:unlock: Lip Reading - Cross Audio-Visual Recognition using 3D Architectures
项目介绍
Lip Reading - Cross Audio-Visual Recognition using 3D Architectures 是一个基于深度学习的开源项目,旨在通过3D卷积神经网络(CNN)实现音频和视觉数据的匹配识别。该项目的主要目标是解决在音频数据受到干扰或缺失的情况下,通过分析说话者的口型运动来提取语音内容。
该项目的主要特点包括:
- 3D卷积神经网络:利用3D卷积神经网络来处理视频数据,提取空间和时间信息。
- 音频-视觉匹配:通过将音频和视觉数据映射到一个表示空间,评估音频和视觉流之间的对应关系。
- 开源实现:提供了完整的代码实现,方便研究人员和开发者进行二次开发和应用。
项目快速启动
环境准备
在开始之前,请确保您的系统已经安装了以下依赖:
- Python 3.x
- TensorFlow
- dlib
- FFmpeg
您可以通过以下命令安装所需的Python包:
pip install -r requirements.txt
克隆项目
首先,克隆项目到本地:
git clone https://github.com/astorfi/lip-reading-deeplearning.git
cd lip-reading-deeplearning
数据准备
项目需要用户提供包含语音和视频数据的输入管道。您可以使用FFmpeg从视频中提取音频文件,并使用dlib库进行面部跟踪和嘴部区域提取。
运行示例
以下是一个简单的示例,展示如何运行项目中的训练和测试脚本:
# 进入代码目录
cd code/training_evaluation
# 运行训练脚本
python train.py
# 运行测试脚本
python test.py
应用案例和最佳实践
应用案例
- 语音识别:在嘈杂环境中,传统的语音识别系统可能无法正常工作。通过唇读技术,可以在音频信号受到干扰时,仍然能够准确识别语音内容。
- 多说话者场景:在多说话者环境中,唇读技术可以帮助识别特定说话者的语音,提高语音识别的准确性。
最佳实践
- 数据预处理:确保输入数据的预处理步骤(如面部跟踪和嘴部区域提取)准确无误,这对于模型的性能至关重要。
- 模型调优:根据具体的应用场景,调整模型的超参数(如学习率、批量大小等)以获得最佳性能。
- 多模态融合:在实际应用中,可以结合音频和视觉数据,通过多模态融合技术进一步提高识别准确率。
典型生态项目
TensorFlow
TensorFlow 是一个开源的机器学习框架,广泛用于深度学习模型的开发和训练。该项目使用TensorFlow作为主要的深度学习框架。
dlib
dlib 是一个现代C++工具包,包含机器学习算法和工具。该项目使用dlib进行面部跟踪和嘴部区域提取。
FFmpeg
FFmpeg 是一个强大的多媒体处理工具,用于从视频中提取音频文件。
通过这些生态项目的结合,Lip Reading - Cross Audio-Visual Recognition using 3D Architectures 项目能够高效地处理音频和视觉数据,实现准确的唇读识别。
lip-reading-deeplearning
:unlock: Lip Reading - Cross Audio-Visual Recognition using 3D Architectures
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355