Lip Reading - Cross Audio-Visual Recognition using 3D Architectures 项目教程
2024-09-15 22:10:09作者:邵娇湘
lip-reading-deeplearning
:unlock: Lip Reading - Cross Audio-Visual Recognition using 3D Architectures
项目介绍
Lip Reading - Cross Audio-Visual Recognition using 3D Architectures 是一个基于深度学习的开源项目,旨在通过3D卷积神经网络(CNN)实现音频和视觉数据的匹配识别。该项目的主要目标是解决在音频数据受到干扰或缺失的情况下,通过分析说话者的口型运动来提取语音内容。
该项目的主要特点包括:
- 3D卷积神经网络:利用3D卷积神经网络来处理视频数据,提取空间和时间信息。
- 音频-视觉匹配:通过将音频和视觉数据映射到一个表示空间,评估音频和视觉流之间的对应关系。
- 开源实现:提供了完整的代码实现,方便研究人员和开发者进行二次开发和应用。
项目快速启动
环境准备
在开始之前,请确保您的系统已经安装了以下依赖:
- Python 3.x
- TensorFlow
- dlib
- FFmpeg
您可以通过以下命令安装所需的Python包:
pip install -r requirements.txt
克隆项目
首先,克隆项目到本地:
git clone https://github.com/astorfi/lip-reading-deeplearning.git
cd lip-reading-deeplearning
数据准备
项目需要用户提供包含语音和视频数据的输入管道。您可以使用FFmpeg从视频中提取音频文件,并使用dlib库进行面部跟踪和嘴部区域提取。
运行示例
以下是一个简单的示例,展示如何运行项目中的训练和测试脚本:
# 进入代码目录
cd code/training_evaluation
# 运行训练脚本
python train.py
# 运行测试脚本
python test.py
应用案例和最佳实践
应用案例
- 语音识别:在嘈杂环境中,传统的语音识别系统可能无法正常工作。通过唇读技术,可以在音频信号受到干扰时,仍然能够准确识别语音内容。
- 多说话者场景:在多说话者环境中,唇读技术可以帮助识别特定说话者的语音,提高语音识别的准确性。
最佳实践
- 数据预处理:确保输入数据的预处理步骤(如面部跟踪和嘴部区域提取)准确无误,这对于模型的性能至关重要。
- 模型调优:根据具体的应用场景,调整模型的超参数(如学习率、批量大小等)以获得最佳性能。
- 多模态融合:在实际应用中,可以结合音频和视觉数据,通过多模态融合技术进一步提高识别准确率。
典型生态项目
TensorFlow
TensorFlow 是一个开源的机器学习框架,广泛用于深度学习模型的开发和训练。该项目使用TensorFlow作为主要的深度学习框架。
dlib
dlib 是一个现代C++工具包,包含机器学习算法和工具。该项目使用dlib进行面部跟踪和嘴部区域提取。
FFmpeg
FFmpeg 是一个强大的多媒体处理工具,用于从视频中提取音频文件。
通过这些生态项目的结合,Lip Reading - Cross Audio-Visual Recognition using 3D Architectures 项目能够高效地处理音频和视觉数据,实现准确的唇读识别。
lip-reading-deeplearning
:unlock: Lip Reading - Cross Audio-Visual Recognition using 3D Architectures
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
445
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
823
398
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
278
329
暂无简介
Dart
702
166
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
142
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
557
111