Vue Vben Admin 项目中大数字精度丢失问题的分析与解决方案
2025-05-06 16:49:23作者:郜逊炳
问题背景
在Vue Vben Admin项目中,当后端接口返回的数字类型ID值较大时,前端会出现精度丢失的问题。这是由于JavaScript在处理大整数时的固有特性导致的。
技术原理
JavaScript使用IEEE 754标准的64位双精度浮点数来表示所有数字类型。这种表示方式存在以下限制:
- 安全整数范围:-2^53到2^53(即-9007199254740991到9007199254740991)
- 超出此范围的整数将无法保证精度
- 当数字超过这个范围时,虽然不会报错,但会丢失精度
问题表现
在Vue Vben Admin项目中,当后端返回的ID值超过安全整数范围时,前端接收到的数据会出现以下现象:
- 数字末尾几位变为0
- 数字值发生改变
- 可能导致数据不一致或功能异常
解决方案
方案一:后端返回字符串格式
最直接的解决方案是让后端将大数字ID以字符串格式返回。这种方式:
- 完全避免了精度问题
- 实现简单,只需修改后端序列化配置
- 兼容性好,所有前端框架都能正确处理
方案二:前端使用json-bigint处理
如果无法修改后端接口,可以在前端使用json-bigint库来处理:
- 安装json-bigint库
- 配置axios拦截器,在响应拦截中对数据进行处理
- 将大数字转换为字符串或BigInt类型
方案三:自定义响应转换
对于不想引入额外库的项目,可以自定义响应转换逻辑:
- 在axios配置中添加transformResponse
- 使用正则表达式或特定规则识别大数字
- 对大数字进行特殊处理
最佳实践建议
- 前后端协作时,应约定ID的数据类型
- 对于可能增长的大数字ID,优先使用字符串类型
- 在项目早期考虑数据精度问题,避免后期重构
- 在接口文档中明确标注大数字字段
总结
Vue Vben Admin项目中遇到的大数字精度问题,本质上是JavaScript语言特性的限制。通过前后端协作和适当的技术方案,可以有效地解决这一问题。建议开发者在项目设计阶段就考虑数据类型的兼容性,避免后期出现数据精度问题。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137