推荐开源项目:GwcNet - 群组相关光流网络
2024-05-21 12:00:14作者:董宙帆
在计算机视觉领域,立体匹配是一个至关重要的问题,它对于自动驾驶、机器人导航以及3D重建等领域有着广泛的应用。今天我们要推荐的开源项目——GwcNet(Group-wise Correlation Stereo Network)正是一个专注于这一领域的创新性算法,它在CVPR 2019年发表,并提供了完整的PyTorch实现。
项目介绍
GwcNet是由郭小阳、杨凯和李洪升等人提出的,旨在提高立体匹配的精度和效率。该模型利用了群组相关的光流估计策略,通过建立像素级别的多组相关性来改进传统的对应度矩阵计算方法。相较于其他方法,GwcNet能够更好地捕捉复杂的图像结构信息,从而在不同场景下取得优异的性能。
项目技术分析
GwcNet的核心是其群组相关层(Group-wise Correlation Layer),它将输入图像分割成多个子群体,对每个子群体分别进行特征提取和相关计算。这种设计减少了大规模相关计算的复杂性,同时也提升了模型的泛化能力。此外,结合残差学习和金字塔池化结构,GwcNet能够在保持计算效率的同时,深入挖掘多层次的上下文信息。
应用场景
- 自动驾驶:精确的深度信息可以帮助车辆感知周围环境,预防碰撞。
- 三维重建:准确的立体匹配是构建真实世界三维模型的基础。
- 视觉SLAM:在实时定位与地图构建中,良好的立体匹配能力有助于提升系统稳定性。
项目特点
- 创新的群组相关策略:不同于传统的一对一对应度计算,GwcNet采用多组相关,增强了模型对复杂场景的理解力。
- 高效的计算结构:通过分割和并行处理,降低了计算复杂度,适合实时应用。
- 易于使用的代码库:基于PyTorch框架,代码清晰,方便研究者复现和扩展。
- 全面的数据支持:提供Scene Flow, KITTI 2012和2015等数据集的训练和评估脚本。
- 预训练模型:作者分享了在Scene Flow和KITTI上的预训练模型,便于快速上手测试。
如果你正在寻找一个能提升你的立体匹配任务性能的解决方案,或者希望了解最新的计算机视觉研究进展,那么GwcNet绝对值得尝试。通过深入研究和实践这个开源项目,你不仅能得到高质量的结果,还能深入理解立体匹配领域的最新理论和技术。现在就加入GwcNet的社区,一起探索更智能的视觉计算吧!
# 使用说明:
# 环境要求
python 3.6
Pytorch >= 0.4.1
# 数据准备
下载Scene Flow Datasets, KITTI 2012, KITTI 2015数据集
# 训练
1. 场景流动数据集:运行 ./scripts/sceneflow.sh
2. KITTI 2012/2015:运行 ./scripts/kitti12.sh 和 ./scripts/kitti15.sh
# 评估
保存测试集预测结果:运行 ./scripts/kitti12_save.sh 和 ./scripts/kitti15_save.sh
# 预训练模型
链接: https://drive.google.com/file/d/<文件ID>/view?usp=sharing (替换<文件ID>)
请确保正确引用该项目,以支持作者的研究工作:
@inproceedings{guo2019group,
title={Group-wise Correlation Stereo Network},
author={Guo, Xiaoyang and Yang, Kai and Yang, Wukui and Wang, Xiaogang and Li, Hongsheng},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={3273--3282},
year={2019}
}
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
344
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896