推荐开源项目:GwcNet - 群组相关光流网络
2024-05-21 12:00:14作者:董宙帆
在计算机视觉领域,立体匹配是一个至关重要的问题,它对于自动驾驶、机器人导航以及3D重建等领域有着广泛的应用。今天我们要推荐的开源项目——GwcNet(Group-wise Correlation Stereo Network)正是一个专注于这一领域的创新性算法,它在CVPR 2019年发表,并提供了完整的PyTorch实现。
项目介绍
GwcNet是由郭小阳、杨凯和李洪升等人提出的,旨在提高立体匹配的精度和效率。该模型利用了群组相关的光流估计策略,通过建立像素级别的多组相关性来改进传统的对应度矩阵计算方法。相较于其他方法,GwcNet能够更好地捕捉复杂的图像结构信息,从而在不同场景下取得优异的性能。
项目技术分析
GwcNet的核心是其群组相关层(Group-wise Correlation Layer),它将输入图像分割成多个子群体,对每个子群体分别进行特征提取和相关计算。这种设计减少了大规模相关计算的复杂性,同时也提升了模型的泛化能力。此外,结合残差学习和金字塔池化结构,GwcNet能够在保持计算效率的同时,深入挖掘多层次的上下文信息。
应用场景
- 自动驾驶:精确的深度信息可以帮助车辆感知周围环境,预防碰撞。
- 三维重建:准确的立体匹配是构建真实世界三维模型的基础。
- 视觉SLAM:在实时定位与地图构建中,良好的立体匹配能力有助于提升系统稳定性。
项目特点
- 创新的群组相关策略:不同于传统的一对一对应度计算,GwcNet采用多组相关,增强了模型对复杂场景的理解力。
- 高效的计算结构:通过分割和并行处理,降低了计算复杂度,适合实时应用。
- 易于使用的代码库:基于PyTorch框架,代码清晰,方便研究者复现和扩展。
- 全面的数据支持:提供Scene Flow, KITTI 2012和2015等数据集的训练和评估脚本。
- 预训练模型:作者分享了在Scene Flow和KITTI上的预训练模型,便于快速上手测试。
如果你正在寻找一个能提升你的立体匹配任务性能的解决方案,或者希望了解最新的计算机视觉研究进展,那么GwcNet绝对值得尝试。通过深入研究和实践这个开源项目,你不仅能得到高质量的结果,还能深入理解立体匹配领域的最新理论和技术。现在就加入GwcNet的社区,一起探索更智能的视觉计算吧!
# 使用说明:
# 环境要求
python 3.6
Pytorch >= 0.4.1
# 数据准备
下载Scene Flow Datasets, KITTI 2012, KITTI 2015数据集
# 训练
1. 场景流动数据集:运行 ./scripts/sceneflow.sh
2. KITTI 2012/2015:运行 ./scripts/kitti12.sh 和 ./scripts/kitti15.sh
# 评估
保存测试集预测结果:运行 ./scripts/kitti12_save.sh 和 ./scripts/kitti15_save.sh
# 预训练模型
链接: https://drive.google.com/file/d/<文件ID>/view?usp=sharing (替换<文件ID>)
请确保正确引用该项目,以支持作者的研究工作:
@inproceedings{guo2019group,
title={Group-wise Correlation Stereo Network},
author={Guo, Xiaoyang and Yang, Kai and Yang, Wukui and Wang, Xiaogang and Li, Hongsheng},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={3273--3282},
year={2019}
}
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
826
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5