推荐开源项目:GwcNet - 群组相关光流网络
2024-05-21 12:00:14作者:董宙帆
在计算机视觉领域,立体匹配是一个至关重要的问题,它对于自动驾驶、机器人导航以及3D重建等领域有着广泛的应用。今天我们要推荐的开源项目——GwcNet(Group-wise Correlation Stereo Network)正是一个专注于这一领域的创新性算法,它在CVPR 2019年发表,并提供了完整的PyTorch实现。
项目介绍
GwcNet是由郭小阳、杨凯和李洪升等人提出的,旨在提高立体匹配的精度和效率。该模型利用了群组相关的光流估计策略,通过建立像素级别的多组相关性来改进传统的对应度矩阵计算方法。相较于其他方法,GwcNet能够更好地捕捉复杂的图像结构信息,从而在不同场景下取得优异的性能。
项目技术分析
GwcNet的核心是其群组相关层(Group-wise Correlation Layer),它将输入图像分割成多个子群体,对每个子群体分别进行特征提取和相关计算。这种设计减少了大规模相关计算的复杂性,同时也提升了模型的泛化能力。此外,结合残差学习和金字塔池化结构,GwcNet能够在保持计算效率的同时,深入挖掘多层次的上下文信息。
应用场景
- 自动驾驶:精确的深度信息可以帮助车辆感知周围环境,预防碰撞。
- 三维重建:准确的立体匹配是构建真实世界三维模型的基础。
- 视觉SLAM:在实时定位与地图构建中,良好的立体匹配能力有助于提升系统稳定性。
项目特点
- 创新的群组相关策略:不同于传统的一对一对应度计算,GwcNet采用多组相关,增强了模型对复杂场景的理解力。
- 高效的计算结构:通过分割和并行处理,降低了计算复杂度,适合实时应用。
- 易于使用的代码库:基于PyTorch框架,代码清晰,方便研究者复现和扩展。
- 全面的数据支持:提供Scene Flow, KITTI 2012和2015等数据集的训练和评估脚本。
- 预训练模型:作者分享了在Scene Flow和KITTI上的预训练模型,便于快速上手测试。
如果你正在寻找一个能提升你的立体匹配任务性能的解决方案,或者希望了解最新的计算机视觉研究进展,那么GwcNet绝对值得尝试。通过深入研究和实践这个开源项目,你不仅能得到高质量的结果,还能深入理解立体匹配领域的最新理论和技术。现在就加入GwcNet的社区,一起探索更智能的视觉计算吧!
# 使用说明:
# 环境要求
python 3.6
Pytorch >= 0.4.1
# 数据准备
下载Scene Flow Datasets, KITTI 2012, KITTI 2015数据集
# 训练
1. 场景流动数据集:运行 ./scripts/sceneflow.sh
2. KITTI 2012/2015:运行 ./scripts/kitti12.sh 和 ./scripts/kitti15.sh
# 评估
保存测试集预测结果:运行 ./scripts/kitti12_save.sh 和 ./scripts/kitti15_save.sh
# 预训练模型
链接: https://drive.google.com/file/d/<文件ID>/view?usp=sharing (替换<文件ID>)
请确保正确引用该项目,以支持作者的研究工作:
@inproceedings{guo2019group,
title={Group-wise Correlation Stereo Network},
author={Guo, Xiaoyang and Yang, Kai and Yang, Wukui and Wang, Xiaogang and Li, Hongsheng},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={3273--3282},
year={2019}
}
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0267cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程视频测验中的Tab键导航问题解析2 freeCodeCamp音乐播放器项目中的函数调用问题解析3 freeCodeCamp论坛排行榜项目中的错误日志规范要求4 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析5 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析6 freeCodeCamp全栈开发课程中React实验项目的分类修正7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp博客页面工作坊中的断言方法优化建议
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.93 K

deepin linux kernel
C
22
6

React Native鸿蒙化仓库
C++
192
274

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
423
392

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
64
511