PSFR-GAN使用指南
2024-10-10 09:19:58作者:鲍丁臣Ursa
1. 目录结构及介绍
├── align_and_crop_dir.py # 脸部对齐与裁剪脚本
├── data # 数据存放目录(需自行下载并放置)
│ ├── FFHQ # FFHQ数据集路径
│ └── ...
├── generate_mask.py # 生成遮罩图的脚本
├── models # 模型相关代码
├── options # 配置选项模块
├── requirements.txt # 项目所需Python包列表
├── test_dir # 测试图像目录示例
├── test_dir_align_results # 对齐后脸部图片保存目录(测试步骤产生)
├── test_dir_enhance_results # 增强处理结果保存目录(测试步骤产生)
├── test_enhance_dir_align.py # 批量测试对齐图像增强脚本
├── test_enhance_dir_unalign.py # 测试未对齐图像批量增强并粘贴回原图脚本
├── test_enhance_single_unalign.py # 单张未对齐图像增强脚本
├── train.py # 训练主脚本
├── utils # 辅助工具函数
├── README.md # 项目说明文档
├── LICENSE # 许可证文件
- align_and_crop_dir.py: 处理源图像目录中的多张图片,进行人脸检测、对齐并保存。
- generate_mask.py: 用于生成解析掩模,若自动生成则需已训练好的FPN模型。
- train.py: 主要的训练脚本,用于训练PSFR-GAN模型。
- **test_**系列脚本: 提供不同场景下的测试功能,包括单张图片、未对齐图片目录和对齐图片目录的处理。
- models: 包含网络架构定义和相关模型逻辑。
- options: 定义了运行时的各种配置选项,如学习率、批次大小等。
2. 项目的启动文件介绍
训练启动:
使用train.py脚本来训练模型。基本命令示例如下:
python train.py --gpus 2 --model enhance --name PSFRGAN_v001 \
--g_lr 0.0001 --d_lr 0.0004 --beta1 0.5 \
--gan_mode 'hinge' --lambda_pix 10 --lambda_fm 10 --lambda_ss 1000 \
--Dinput_nc 22 --D_num 3 --n_layers_D 4 \
--batch_size 2 --dataset ffhq --dataroot /datasets/FFHQ \
--visual_freq 100 --print_freq 10
这个命令会利用指定数量的GPU来训练一个名为PSFRGAN_v001的模型,参数配置涵盖了学习率、损失权重等关键设置。
测试启动:
对于测试,你可以使用test_enhance_single_unalign.py来进行单张图片的快速测试:
python test_enhance_single_unalign.py --test_img_path test_dir/test_hzgg.jpg --results_dir test_hzgg_results --gpus 1
此命令将处理一张图片,并将增强后的结果存放在指定的结果目录中。
3. 项目的配置文件介绍
配置主要通过train.py和脚本中的命令行参数进行,而不是独立的配置文件。options目录下的各种文件提供了预设的配置项,这些配置项可以通过脚本调用时的命令行参数进行覆盖或修改。例如,学习率(--g_lr和--d_lr)、优化器参数(--beta1)、损失函数权重(--lambda_pix, --lambda_fm, --lambda_ss)等都是在运行脚本时直接设定的。
通过这种方式,用户可以在不直接编辑代码的情况下灵活地调整实验设置,实现不同目的的模型训练与测试。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210