首页
/ Awesome-LLM-Compression 使用教程

Awesome-LLM-Compression 使用教程

2024-08-25 10:42:09作者:董灵辛Dennis

项目介绍

Awesome-LLM-Compression 是一个专注于大语言模型(LLM)压缩研究的开源项目。该项目收集了大量的研究论文和工具,旨在加速 LLM 的训练和推理过程。通过量化、剪枝、蒸馏等技术,该项目帮助开发者提高模型的效率和性能。

项目快速启动

安装

首先,克隆项目仓库到本地:

git clone https://github.com/HuangOwen/Awesome-LLM-Compression.git
cd Awesome-LLM-Compression

使用示例

以下是一个简单的示例,展示如何使用项目中的量化工具:

import awesome_llm_compression as alc

# 加载预训练模型
model = alc.load_model('path/to/pretrained/model')

# 应用量化
quantized_model = alc.quantize(model)

# 保存量化后的模型
alc.save_model(quantized_model, 'path/to/save/quantized/model')

应用案例和最佳实践

案例一:模型量化

通过量化技术,可以在不显著损失模型性能的情况下,大幅减少模型的大小和推理时间。以下是一个量化应用的案例:

import awesome_llm_compression as alc

# 加载预训练模型
model = alc.load_model('path/to/pretrained/model')

# 应用量化
quantized_model = alc.quantize(model, bits=8)

# 评估量化后的模型
accuracy = alc.evaluate(quantized_model, 'path/to/test/data')
print(f'Quantized model accuracy: {accuracy}')

案例二:模型剪枝

剪枝技术通过移除模型中不重要的权重,可以进一步减少模型的大小和计算需求。以下是一个剪枝应用的案例:

import awesome_llm_compression as alc

# 加载预训练模型
model = alc.load_model('path/to/pretrained/model')

# 应用剪枝
pruned_model = alc.prune(model, sparsity=0.5)

# 评估剪枝后的模型
accuracy = alc.evaluate(pruned_model, 'path/to/test/data')
print(f'Pruned model accuracy: {accuracy}')

典型生态项目

DeepSpeed

DeepSpeed 是一个用于训练大规模模型的深度学习优化库,与 Awesome-LLM-Compression 项目结合使用,可以进一步提高训练效率和模型性能。

Transformers

Transformers 库提供了大量的预训练模型,与 Awesome-LLM-Compression 项目结合使用,可以方便地对这些模型进行压缩和优化。

ONNX

ONNX 是一个开放的神经网络交换格式,通过将模型转换为 ONNX 格式,可以方便地在不同的框架和硬件上进行部署和优化。

通过以上模块的介绍和示例,开发者可以快速上手并应用 Awesome-LLM-Compression 项目,实现对大语言模型的压缩和优化。

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
825
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5