Awesome-LLM-Compression 使用教程
2024-08-25 17:11:32作者:董灵辛Dennis
项目介绍
Awesome-LLM-Compression 是一个专注于大语言模型(LLM)压缩研究的开源项目。该项目收集了大量的研究论文和工具,旨在加速 LLM 的训练和推理过程。通过量化、剪枝、蒸馏等技术,该项目帮助开发者提高模型的效率和性能。
项目快速启动
安装
首先,克隆项目仓库到本地:
git clone https://github.com/HuangOwen/Awesome-LLM-Compression.git
cd Awesome-LLM-Compression
使用示例
以下是一个简单的示例,展示如何使用项目中的量化工具:
import awesome_llm_compression as alc
# 加载预训练模型
model = alc.load_model('path/to/pretrained/model')
# 应用量化
quantized_model = alc.quantize(model)
# 保存量化后的模型
alc.save_model(quantized_model, 'path/to/save/quantized/model')
应用案例和最佳实践
案例一:模型量化
通过量化技术,可以在不显著损失模型性能的情况下,大幅减少模型的大小和推理时间。以下是一个量化应用的案例:
import awesome_llm_compression as alc
# 加载预训练模型
model = alc.load_model('path/to/pretrained/model')
# 应用量化
quantized_model = alc.quantize(model, bits=8)
# 评估量化后的模型
accuracy = alc.evaluate(quantized_model, 'path/to/test/data')
print(f'Quantized model accuracy: {accuracy}')
案例二:模型剪枝
剪枝技术通过移除模型中不重要的权重,可以进一步减少模型的大小和计算需求。以下是一个剪枝应用的案例:
import awesome_llm_compression as alc
# 加载预训练模型
model = alc.load_model('path/to/pretrained/model')
# 应用剪枝
pruned_model = alc.prune(model, sparsity=0.5)
# 评估剪枝后的模型
accuracy = alc.evaluate(pruned_model, 'path/to/test/data')
print(f'Pruned model accuracy: {accuracy}')
典型生态项目
DeepSpeed
DeepSpeed 是一个用于训练大规模模型的深度学习优化库,与 Awesome-LLM-Compression 项目结合使用,可以进一步提高训练效率和模型性能。
Transformers
Transformers 库提供了大量的预训练模型,与 Awesome-LLM-Compression 项目结合使用,可以方便地对这些模型进行压缩和优化。
ONNX
ONNX 是一个开放的神经网络交换格式,通过将模型转换为 ONNX 格式,可以方便地在不同的框架和硬件上进行部署和优化。
通过以上模块的介绍和示例,开发者可以快速上手并应用 Awesome-LLM-Compression 项目,实现对大语言模型的压缩和优化。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
595
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K