Awesome-Code-LLM 项目教程
2024-08-31 06:32:03作者:郦嵘贵Just
1、项目的目录结构及介绍
Awesome-Code-LLM/
├── README.md
├── LICENSE
├── data/
│ ├── dataset1/
│ └── dataset2/
├── models/
│ ├── model1/
│ └── model2/
├── scripts/
│ ├── train.py
│ └── evaluate.py
├── config/
│ ├── default.yaml
│ └── custom.yaml
└── main.py
- README.md: 项目介绍文件。
- LICENSE: 项目许可证文件。
- data/: 存放数据集的目录。
- models/: 存放模型的目录。
- scripts/: 存放训练和评估脚本的目录。
- config/: 存放配置文件的目录。
- main.py: 项目的启动文件。
2、项目的启动文件介绍
main.py
是项目的启动文件,负责初始化项目并调用其他模块。以下是 main.py
的基本结构:
import argparse
from config import load_config
from models import load_model
from data import load_data
def main():
parser = argparse.ArgumentParser(description="Awesome-Code-LLM")
parser.add_argument("--config", type=str, default="default.yaml", help="配置文件路径")
args = parser.parse_args()
config = load_config(args.config)
model = load_model(config)
data = load_data(config)
# 训练或评估模型
if config["mode"] == "train":
train(model, data, config)
elif config["mode"] == "eval":
evaluate(model, data, config)
if __name__ == "__main__":
main()
3、项目的配置文件介绍
config/
目录下包含项目的配置文件,其中 default.yaml
是默认配置文件,custom.yaml
是自定义配置文件。以下是 default.yaml
的基本结构:
mode: train
data:
path: "data/dataset1"
batch_size: 32
model:
name: "model1"
learning_rate: 0.001
train:
epochs: 10
save_path: "models/model1"
eval:
metrics: ["accuracy", "f1_score"]
- mode: 运行模式,可以是
train
或eval
。 - data: 数据相关配置,包括数据路径和批次大小。
- model: 模型相关配置,包括模型名称和学习率。
- train: 训练相关配置,包括训练轮数和模型保存路径。
- eval: 评估相关配置,包括评估指标。
以上是 Awesome-Code-LLM
项目的基本教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些内容能帮助你更好地理解和使用该项目。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
828
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cj
一个markdown解析和展示的库
Cangjie
10
1