Seurat项目中FindMarkers函数在版本4与版本5的avg_log2FC差异解析
背景介绍
在单细胞RNA测序数据分析中,Seurat是一个广泛使用的R语言工具包。FindMarkers函数是Seurat中用于识别差异表达基因的核心功能之一,其输出的avg_log2FC(平均对数倍数变化)值是研究者判断基因表达差异的重要指标。
问题发现
近期有用户报告,在Seurat版本4升级到版本5后,使用相同的输入数据和分组条件运行FindMarkers函数时,虽然p值和调整后的p值保持一致,但avg_log2FC值却出现了显著差异。这一现象引起了数据分析人员的困惑,因为差异表达分析的结果直接影响后续的生物学解释。
技术原因分析
经过Seurat开发团队的确认,这一变化源于版本5中对伪计数(pseudocount)处理方式的调整:
-
伪计数的作用:在计算对数倍数变化时,为避免对零值取对数,通常会添加一个很小的伪计数。这个值的选择会显著影响低表达基因的FC计算结果。
-
版本间的差异:
- Seurat 4使用固定的伪计数
- Seurat 5采用了更智能的伪计数策略,会根据基因表达水平动态调整
-
影响范围:这种变化对低表达基因的影响尤为明显,因为它们的表达值相对较小,伪计数的变化会显著改变对数转换后的结果。
对分析结果的影响
-
高表达基因:表达量较高的基因受影响较小,因为伪计数相对于其表达量可以忽略不计。
-
低表达基因:低表达基因的avg_log2FC值可能会有较大变化,因为伪计数与表达量处于同一数量级。
-
统计学显著性:值得注意的是,虽然FC值发生了变化,但p值和调整后的p值保持不变,说明统计学显著性判断不受影响。
实际应用建议
-
版本选择:如果研究需要与之前版本的结果严格可比,可以考虑继续使用Seurat 4。
-
结果解释:在使用Seurat 5时,应特别注意低表达基因的差异表达分析结果,理解其FC值变化的技术原因。
-
方法记录:在发表研究成果时,应明确注明使用的Seurat版本号,便于结果复现和比较。
-
阈值调整:可以考虑根据新版本的特性,适当调整差异表达基因的筛选阈值。
结论
Seurat 5中对FindMarkers函数的优化改进了低表达基因的差异分析结果,虽然导致了与之前版本在avg_log2FC值上的差异,但这种变化是算法改进的结果,而非错误。研究人员应当理解这一技术变更,并在数据分析中予以考虑。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C064
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00