Seurat项目中FindMarkers函数在版本4与版本5的avg_log2FC差异解析
背景介绍
在单细胞RNA测序数据分析中,Seurat是一个广泛使用的R语言工具包。FindMarkers函数是Seurat中用于识别差异表达基因的核心功能之一,其输出的avg_log2FC(平均对数倍数变化)值是研究者判断基因表达差异的重要指标。
问题发现
近期有用户报告,在Seurat版本4升级到版本5后,使用相同的输入数据和分组条件运行FindMarkers函数时,虽然p值和调整后的p值保持一致,但avg_log2FC值却出现了显著差异。这一现象引起了数据分析人员的困惑,因为差异表达分析的结果直接影响后续的生物学解释。
技术原因分析
经过Seurat开发团队的确认,这一变化源于版本5中对伪计数(pseudocount)处理方式的调整:
-
伪计数的作用:在计算对数倍数变化时,为避免对零值取对数,通常会添加一个很小的伪计数。这个值的选择会显著影响低表达基因的FC计算结果。
-
版本间的差异:
- Seurat 4使用固定的伪计数
- Seurat 5采用了更智能的伪计数策略,会根据基因表达水平动态调整
-
影响范围:这种变化对低表达基因的影响尤为明显,因为它们的表达值相对较小,伪计数的变化会显著改变对数转换后的结果。
对分析结果的影响
-
高表达基因:表达量较高的基因受影响较小,因为伪计数相对于其表达量可以忽略不计。
-
低表达基因:低表达基因的avg_log2FC值可能会有较大变化,因为伪计数与表达量处于同一数量级。
-
统计学显著性:值得注意的是,虽然FC值发生了变化,但p值和调整后的p值保持不变,说明统计学显著性判断不受影响。
实际应用建议
-
版本选择:如果研究需要与之前版本的结果严格可比,可以考虑继续使用Seurat 4。
-
结果解释:在使用Seurat 5时,应特别注意低表达基因的差异表达分析结果,理解其FC值变化的技术原因。
-
方法记录:在发表研究成果时,应明确注明使用的Seurat版本号,便于结果复现和比较。
-
阈值调整:可以考虑根据新版本的特性,适当调整差异表达基因的筛选阈值。
结论
Seurat 5中对FindMarkers函数的优化改进了低表达基因的差异分析结果,虽然导致了与之前版本在avg_log2FC值上的差异,但这种变化是算法改进的结果,而非错误。研究人员应当理解这一技术变更,并在数据分析中予以考虑。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00