Seurat项目中FindMarkers函数在版本4与版本5的avg_log2FC差异解析
背景介绍
在单细胞RNA测序数据分析中,Seurat是一个广泛使用的R语言工具包。FindMarkers函数是Seurat中用于识别差异表达基因的核心功能之一,其输出的avg_log2FC(平均对数倍数变化)值是研究者判断基因表达差异的重要指标。
问题发现
近期有用户报告,在Seurat版本4升级到版本5后,使用相同的输入数据和分组条件运行FindMarkers函数时,虽然p值和调整后的p值保持一致,但avg_log2FC值却出现了显著差异。这一现象引起了数据分析人员的困惑,因为差异表达分析的结果直接影响后续的生物学解释。
技术原因分析
经过Seurat开发团队的确认,这一变化源于版本5中对伪计数(pseudocount)处理方式的调整:
-
伪计数的作用:在计算对数倍数变化时,为避免对零值取对数,通常会添加一个很小的伪计数。这个值的选择会显著影响低表达基因的FC计算结果。
-
版本间的差异:
- Seurat 4使用固定的伪计数
- Seurat 5采用了更智能的伪计数策略,会根据基因表达水平动态调整
-
影响范围:这种变化对低表达基因的影响尤为明显,因为它们的表达值相对较小,伪计数的变化会显著改变对数转换后的结果。
对分析结果的影响
-
高表达基因:表达量较高的基因受影响较小,因为伪计数相对于其表达量可以忽略不计。
-
低表达基因:低表达基因的avg_log2FC值可能会有较大变化,因为伪计数与表达量处于同一数量级。
-
统计学显著性:值得注意的是,虽然FC值发生了变化,但p值和调整后的p值保持不变,说明统计学显著性判断不受影响。
实际应用建议
-
版本选择:如果研究需要与之前版本的结果严格可比,可以考虑继续使用Seurat 4。
-
结果解释:在使用Seurat 5时,应特别注意低表达基因的差异表达分析结果,理解其FC值变化的技术原因。
-
方法记录:在发表研究成果时,应明确注明使用的Seurat版本号,便于结果复现和比较。
-
阈值调整:可以考虑根据新版本的特性,适当调整差异表达基因的筛选阈值。
结论
Seurat 5中对FindMarkers函数的优化改进了低表达基因的差异分析结果,虽然导致了与之前版本在avg_log2FC值上的差异,但这种变化是算法改进的结果,而非错误。研究人员应当理解这一技术变更,并在数据分析中予以考虑。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00