Seurat中findmarkers()函数latent.vars参数的技术解析
2025-07-02 21:37:03作者:卓艾滢Kingsley
关于Seurat的findmarkers函数中潜在变量处理
在单细胞RNA测序数据分析中,Seurat包提供的findmarkers()函数是识别差异表达基因的重要工具。其中latent.vars参数允许用户控制潜在的混杂因素,这对获得准确的差异表达结果至关重要。
缺失性别信息的处理策略
当样本中存在性别信息缺失(NA)时,研究者面临三种选择:
-
直接包含性别变量:即使部分样本性别信息缺失,仍将Sex变量纳入latent.vars。这种方法简单但可能导致信息损失。
-
样本过滤:移除性别信息缺失的样本,确保分析基于完整数据集。这种方法保守但可能减少统计功效。
-
性别信息推断:更优的方案是利用chrY基因(不包括假常染色体区域)的表达模式来推断缺失样本的性别。这种方法能够最大化利用现有数据,同时保证分析质量。
协变量调整的注意事项
在分析中考虑样本或供体效应时,findmarkers()函数仅能控制指定的协变量影响。例如,当比较疾病组与对照组时:
- 如果仅指定"sample"或"donor"作为协变量,函数将仅控制这些变量带来的影响
- 其他潜在混杂因素如性别、年龄等不会被自动控制
- 需要显式地将所有相关协变量加入latent.vars参数
技术协变量的考量
关于是否包含nCount(UMI总数)和nGene(检测基因数)作为协变量:
- 当使用"data"slot进行标准FindMarkers分析时,不需要特别将这些技术指标作为潜在变量
- 但在某些特殊情况下(如癌细胞全基因组复制导致UMI数显著增加),这些指标可能反映真实的生物学差异,此时应考虑纳入分析
批次效应的处理
对于不同测序批次或平台带来的技术变异:
- 批次效应通常应作为协变量纳入分析
- 但需注意过度校正风险,特别是当批次与生物学因素存在关联时
- 建议比较包含与不包含批次变量的分析结果,评估其对差异基因的影响
在实际分析中,研究者应根据具体科学问题和数据特点,通过模型比较选择最优的协变量组合,确保差异表达分析结果的可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C064
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 单总线CPU设计实训代码:计算机组成原理最佳学习资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起
deepin linux kernel
C
26
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
457
3.41 K
Ascend Extension for PyTorch
Python
264
296
暂无简介
Dart
709
169
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
176
64
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
838
412
React Native鸿蒙化仓库
JavaScript
284
331
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
689
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
420
130