压缩张量存储库使用指南
2025-04-21 07:46:29作者:乔或婵
1. 项目介绍
compressed-tensors 是一个开源库,它扩展了 safetensors 格式,提供了一种灵活且高效的方式来存储和管理压缩的张量数据。该库支持多种量化方法和稀疏模式,可以统一处理不同的模型优化技术,如 GPTQ、AWQ、SmoothQuant、INT8、FP8、SparseGPT 等。它的目标是简化模型部署流程,降低支持多种压缩格式在推理引擎中的开销。
2. 项目快速启动
首先,您需要安装 compressed-tensors 库。可以通过以下命令从 PyPI 安装稳定版本:
pip install compressed-tensors
或者,如果您希望安装最新版本,可以使用以下命令:
pip install --pre compressed-tensors
接下来,以下是一个简单的示例,展示如何使用 BitmaskConfig 来压缩和加载张量:
from compressed_tensors import save_compressed, load_compressed, BitmaskConfig
from torch import Tensor
from typing import Dict
# 创建压缩配置
compression_config = BitmaskConfig()
# 定义一些张量
tensors: Dict[str, Tensor] = {
"tensor_1": Tensor([[0.0, 0.0, 0.0], [1.0, 1.0, 1.0]])
}
# 压缩张量并保存到磁盘
save_compressed(tensors, "model.safetensors", compression_format=compression_config.format)
# 从磁盘加载压缩的张量
decompressed_tensors = {}
for tensor_name, tensor in load_compressed("model.safetensors", compression_config=compression_config):
decompressed_tensors[tensor_name] = tensor
3. 应用案例和最佳实践
以下是一个使用 compressed-tensors 库压缩整个模型的示例:
from compressed_tensors import save_compressed_model, load_compressed
from transformers import AutoModelForCausalLM
from compressed_tensors import BitmaskConfig
# 加载预训练模型
model_name = "neuralmagic/llama2.c-stories110M-pruned50"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto")
original_state_dict = model.state_dict()
# 创建压缩配置
compression_config = BitmaskConfig()
# 保存压缩的模型权重
save_compressed_model(model, "compressed_model.safetensors", compression_format=compression_config.format)
# 加载压缩的模型权重
state_dict = dict(load_compressed("compressed_model.safetensors", compression_config=compression_config))
4. 典型生态项目
目前,compressed-tensors 已被设计为与 Hugging Face 模型和 PyTorch 无缝集成,这意味着开发者可以轻松地尝试组合不同的量化方法,简化模型部署流程。此外,由于它的开源特性,社区中可能有更多的集成和扩展项目出现,以进一步丰富其生态系统。
以上就是关于 compressed-tensors 的基本介绍、快速启动指南、应用案例和生态项目概述。希望这些信息能够帮助您更好地了解和使用这个项目。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248