压缩张量存储库使用指南
2025-04-21 02:52:39作者:乔或婵
1. 项目介绍
compressed-tensors 是一个开源库,它扩展了 safetensors 格式,提供了一种灵活且高效的方式来存储和管理压缩的张量数据。该库支持多种量化方法和稀疏模式,可以统一处理不同的模型优化技术,如 GPTQ、AWQ、SmoothQuant、INT8、FP8、SparseGPT 等。它的目标是简化模型部署流程,降低支持多种压缩格式在推理引擎中的开销。
2. 项目快速启动
首先,您需要安装 compressed-tensors 库。可以通过以下命令从 PyPI 安装稳定版本:
pip install compressed-tensors
或者,如果您希望安装最新版本,可以使用以下命令:
pip install --pre compressed-tensors
接下来,以下是一个简单的示例,展示如何使用 BitmaskConfig 来压缩和加载张量:
from compressed_tensors import save_compressed, load_compressed, BitmaskConfig
from torch import Tensor
from typing import Dict
# 创建压缩配置
compression_config = BitmaskConfig()
# 定义一些张量
tensors: Dict[str, Tensor] = {
"tensor_1": Tensor([[0.0, 0.0, 0.0], [1.0, 1.0, 1.0]])
}
# 压缩张量并保存到磁盘
save_compressed(tensors, "model.safetensors", compression_format=compression_config.format)
# 从磁盘加载压缩的张量
decompressed_tensors = {}
for tensor_name, tensor in load_compressed("model.safetensors", compression_config=compression_config):
decompressed_tensors[tensor_name] = tensor
3. 应用案例和最佳实践
以下是一个使用 compressed-tensors 库压缩整个模型的示例:
from compressed_tensors import save_compressed_model, load_compressed
from transformers import AutoModelForCausalLM
from compressed_tensors import BitmaskConfig
# 加载预训练模型
model_name = "neuralmagic/llama2.c-stories110M-pruned50"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto")
original_state_dict = model.state_dict()
# 创建压缩配置
compression_config = BitmaskConfig()
# 保存压缩的模型权重
save_compressed_model(model, "compressed_model.safetensors", compression_format=compression_config.format)
# 加载压缩的模型权重
state_dict = dict(load_compressed("compressed_model.safetensors", compression_config=compression_config))
4. 典型生态项目
目前,compressed-tensors 已被设计为与 Hugging Face 模型和 PyTorch 无缝集成,这意味着开发者可以轻松地尝试组合不同的量化方法,简化模型部署流程。此外,由于它的开源特性,社区中可能有更多的集成和扩展项目出现,以进一步丰富其生态系统。
以上就是关于 compressed-tensors 的基本介绍、快速启动指南、应用案例和生态项目概述。希望这些信息能够帮助您更好地了解和使用这个项目。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
306
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882