Deep-Searcher项目在Windows系统下使用Milvus数据库的解决方案
2025-06-06 20:34:04作者:胡易黎Nicole
背景介绍
Deep-Searcher是一个基于Milvus向量数据库的开源搜索项目,它能够高效地进行向量相似度搜索。然而,当用户在Windows操作系统上尝试运行该项目时,可能会遇到"ModuleNotFoundError: No module named 'milvus_lite'"的错误提示。
问题根源
这个问题的根本原因在于Milvus Lite目前尚未支持Windows平台。根据官方说明,Milvus Lite目前仅支持以下环境:
- Ubuntu 20.04及以上版本(x86_64和arm64架构)
- MacOS 11.0及以上版本(Apple Silicon M1/M2和x86_64架构)
解决方案
对于Windows用户,有以下两种可行的解决方案:
方案一:使用在线Milvus服务
用户可以选择使用云端的Milvus服务,这种方式无需在本地安装Milvus,只需要通过API连接远程服务即可。这种方式适合不想在本地搭建环境的用户,或者需要快速上手的场景。
方案二:通过Docker部署完整版Milvus
对于需要在本地运行的用户,可以通过Docker容器技术部署完整的Milvus服务。具体步骤如下:
- 确保系统已安装Docker Desktop
- 下载并运行官方提供的Windows安装脚本
- 该脚本会自动设置并启动Milvus容器
配置调整
采用上述方案后,需要对Deep-Searcher项目的配置文件进行相应修改:
原配置:
vector_db:
provider: "Milvus"
config:
default_collection: "deepsearcher"
uri: "./milvus.db"
token: "root:Milvus"
db: "default"
修改为:
vector_db:
provider: "Milvus"
config:
default_collection: "deepsearcher"
uri: "http://localhost:19530"
token: "root:Milvus"
db: "default"
主要变化是将uri从本地文件路径改为Milvus服务的标准端口地址。
技术建议
- 对于开发环境,推荐使用Docker方式部署,这样可以获得与生产环境一致的体验
- 如果只是进行简单测试,云服务可能更为便捷
- 注意Milvus服务的版本兼容性,确保与Deep-Searcher项目要求的版本匹配
- 在Windows上使用Docker时,建议分配足够的内存资源(至少4GB)
总结
虽然Milvus Lite目前不支持Windows平台,但通过上述替代方案,Windows用户仍然可以顺利使用Deep-Searcher项目。根据实际需求选择合适的部署方式,并做好相应的配置调整,就能克服平台限制,充分发挥Deep-Searcher的向量搜索能力。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355