Deep-Searcher项目在Windows系统下使用Milvus数据库的解决方案
2025-06-06 20:34:04作者:胡易黎Nicole
背景介绍
Deep-Searcher是一个基于Milvus向量数据库的开源搜索项目,它能够高效地进行向量相似度搜索。然而,当用户在Windows操作系统上尝试运行该项目时,可能会遇到"ModuleNotFoundError: No module named 'milvus_lite'"的错误提示。
问题根源
这个问题的根本原因在于Milvus Lite目前尚未支持Windows平台。根据官方说明,Milvus Lite目前仅支持以下环境:
- Ubuntu 20.04及以上版本(x86_64和arm64架构)
- MacOS 11.0及以上版本(Apple Silicon M1/M2和x86_64架构)
解决方案
对于Windows用户,有以下两种可行的解决方案:
方案一:使用在线Milvus服务
用户可以选择使用云端的Milvus服务,这种方式无需在本地安装Milvus,只需要通过API连接远程服务即可。这种方式适合不想在本地搭建环境的用户,或者需要快速上手的场景。
方案二:通过Docker部署完整版Milvus
对于需要在本地运行的用户,可以通过Docker容器技术部署完整的Milvus服务。具体步骤如下:
- 确保系统已安装Docker Desktop
- 下载并运行官方提供的Windows安装脚本
- 该脚本会自动设置并启动Milvus容器
配置调整
采用上述方案后,需要对Deep-Searcher项目的配置文件进行相应修改:
原配置:
vector_db:
provider: "Milvus"
config:
default_collection: "deepsearcher"
uri: "./milvus.db"
token: "root:Milvus"
db: "default"
修改为:
vector_db:
provider: "Milvus"
config:
default_collection: "deepsearcher"
uri: "http://localhost:19530"
token: "root:Milvus"
db: "default"
主要变化是将uri从本地文件路径改为Milvus服务的标准端口地址。
技术建议
- 对于开发环境,推荐使用Docker方式部署,这样可以获得与生产环境一致的体验
- 如果只是进行简单测试,云服务可能更为便捷
- 注意Milvus服务的版本兼容性,确保与Deep-Searcher项目要求的版本匹配
- 在Windows上使用Docker时,建议分配足够的内存资源(至少4GB)
总结
虽然Milvus Lite目前不支持Windows平台,但通过上述替代方案,Windows用户仍然可以顺利使用Deep-Searcher项目。根据实际需求选择合适的部署方式,并做好相应的配置调整,就能克服平台限制,充分发挥Deep-Searcher的向量搜索能力。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
498
3.65 K
Ascend Extension for PyTorch
Python
301
343
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
309
134
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
870
482
暂无简介
Dart
745
180
React Native鸿蒙化仓库
JavaScript
297
347
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
151
882