Deep-Searcher项目中的Milvus向量搜索优化实践
背景介绍
Deep-Searcher是一个基于深度学习的搜索框架,它整合了多种AI模型和向量数据库技术,为用户提供高效的语义搜索能力。在实际应用中,开发者发现当使用Milvus作为向量数据库时,搜索结果无法正常返回,经过排查发现是输出字段配置问题导致的。
问题分析
在Milvus向量数据库的搜索接口调用中,开发者最初尝试使用通配符"*"来输出所有字段:
search_results = self.client.search(
collection_name=collection,
data=[vector],
limit=top_k,
output_fields=["*"], # 问题所在
timeout=10,
)
这种配置会导致搜索无法返回预期的结果,特别是当集合中包含嵌入向量(embedding)字段时。这是因为Milvus对输出字段有特殊限制,不能直接使用通配符输出所有字段,特别是对于嵌入向量这类大型数据字段。
解决方案
经过调试,开发者发现需要明确指定需要输出的字段列表,而不是使用通配符。修正后的代码如下:
search_results = self.client.search(
collection_name=collection,
data=[vector],
limit=top_k,
output_fields=["embedding", "text", "reference", "metadata"],
timeout=10,
)
这种显式指定输出字段的方式解决了搜索结果不返回的问题。在实际应用中,开发者应该根据业务需求选择真正需要返回的字段,而不是盲目地尝试获取所有字段。
技术原理
-
Milvus字段管理机制:Milvus对不同类型的字段有不同的处理策略,特别是对于向量字段,出于性能考虑会限制其输出方式。
-
输出字段优化:明确指定输出字段不仅可以解决兼容性问题,还能减少网络传输数据量,提高搜索性能。
-
向量搜索流程:Deep-Searcher的搜索流程包括查询编码、向量搜索、结果后处理等步骤,其中向量数据库接口的正确配置是关键环节。
最佳实践
-
字段规划:在设计集合时,明确区分需要搜索的字段和需要输出的字段。
-
最小化输出原则:只请求必要的字段,减少不必要的数据传输。
-
错误处理:对数据库操作添加适当的错误处理和日志记录,便于问题排查。
-
版本兼容性检查:不同版本的Milvus可能有不同的接口行为,升级时需注意兼容性。
总结
通过这个案例我们可以看到,在使用向量数据库时,理解其底层机制和接口规范非常重要。Deep-Searcher框架通过优化Milvus的查询配置,解决了搜索结果不返回的问题,同时也为开发者提供了性能优化的思路。在实际项目中,类似的细节优化往往能显著提升系统稳定性和性能。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









