Deep-Searcher项目中的Milvus向量搜索优化实践
背景介绍
Deep-Searcher是一个基于深度学习的搜索框架,它整合了多种AI模型和向量数据库技术,为用户提供高效的语义搜索能力。在实际应用中,开发者发现当使用Milvus作为向量数据库时,搜索结果无法正常返回,经过排查发现是输出字段配置问题导致的。
问题分析
在Milvus向量数据库的搜索接口调用中,开发者最初尝试使用通配符"*"来输出所有字段:
search_results = self.client.search(
collection_name=collection,
data=[vector],
limit=top_k,
output_fields=["*"], # 问题所在
timeout=10,
)
这种配置会导致搜索无法返回预期的结果,特别是当集合中包含嵌入向量(embedding)字段时。这是因为Milvus对输出字段有特殊限制,不能直接使用通配符输出所有字段,特别是对于嵌入向量这类大型数据字段。
解决方案
经过调试,开发者发现需要明确指定需要输出的字段列表,而不是使用通配符。修正后的代码如下:
search_results = self.client.search(
collection_name=collection,
data=[vector],
limit=top_k,
output_fields=["embedding", "text", "reference", "metadata"],
timeout=10,
)
这种显式指定输出字段的方式解决了搜索结果不返回的问题。在实际应用中,开发者应该根据业务需求选择真正需要返回的字段,而不是盲目地尝试获取所有字段。
技术原理
-
Milvus字段管理机制:Milvus对不同类型的字段有不同的处理策略,特别是对于向量字段,出于性能考虑会限制其输出方式。
-
输出字段优化:明确指定输出字段不仅可以解决兼容性问题,还能减少网络传输数据量,提高搜索性能。
-
向量搜索流程:Deep-Searcher的搜索流程包括查询编码、向量搜索、结果后处理等步骤,其中向量数据库接口的正确配置是关键环节。
最佳实践
-
字段规划:在设计集合时,明确区分需要搜索的字段和需要输出的字段。
-
最小化输出原则:只请求必要的字段,减少不必要的数据传输。
-
错误处理:对数据库操作添加适当的错误处理和日志记录,便于问题排查。
-
版本兼容性检查:不同版本的Milvus可能有不同的接口行为,升级时需注意兼容性。
总结
通过这个案例我们可以看到,在使用向量数据库时,理解其底层机制和接口规范非常重要。Deep-Searcher框架通过优化Milvus的查询配置,解决了搜索结果不返回的问题,同时也为开发者提供了性能优化的思路。在实际项目中,类似的细节优化往往能显著提升系统稳定性和性能。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00