首页
/ Deep-Searcher项目中的Milvus向量搜索优化实践

Deep-Searcher项目中的Milvus向量搜索优化实践

2025-06-06 07:31:18作者:伍霜盼Ellen

背景介绍

Deep-Searcher是一个基于深度学习的搜索框架,它整合了多种AI模型和向量数据库技术,为用户提供高效的语义搜索能力。在实际应用中,开发者发现当使用Milvus作为向量数据库时,搜索结果无法正常返回,经过排查发现是输出字段配置问题导致的。

问题分析

在Milvus向量数据库的搜索接口调用中,开发者最初尝试使用通配符"*"来输出所有字段:

search_results = self.client.search(
    collection_name=collection,
    data=[vector],
    limit=top_k,
    output_fields=["*"],  # 问题所在
    timeout=10,
)

这种配置会导致搜索无法返回预期的结果,特别是当集合中包含嵌入向量(embedding)字段时。这是因为Milvus对输出字段有特殊限制,不能直接使用通配符输出所有字段,特别是对于嵌入向量这类大型数据字段。

解决方案

经过调试,开发者发现需要明确指定需要输出的字段列表,而不是使用通配符。修正后的代码如下:

search_results = self.client.search(
    collection_name=collection,
    data=[vector],
    limit=top_k,
    output_fields=["embedding", "text", "reference", "metadata"],
    timeout=10,
)

这种显式指定输出字段的方式解决了搜索结果不返回的问题。在实际应用中,开发者应该根据业务需求选择真正需要返回的字段,而不是盲目地尝试获取所有字段。

技术原理

  1. Milvus字段管理机制:Milvus对不同类型的字段有不同的处理策略,特别是对于向量字段,出于性能考虑会限制其输出方式。

  2. 输出字段优化:明确指定输出字段不仅可以解决兼容性问题,还能减少网络传输数据量,提高搜索性能。

  3. 向量搜索流程:Deep-Searcher的搜索流程包括查询编码、向量搜索、结果后处理等步骤,其中向量数据库接口的正确配置是关键环节。

最佳实践

  1. 字段规划:在设计集合时,明确区分需要搜索的字段和需要输出的字段。

  2. 最小化输出原则:只请求必要的字段,减少不必要的数据传输。

  3. 错误处理:对数据库操作添加适当的错误处理和日志记录,便于问题排查。

  4. 版本兼容性检查:不同版本的Milvus可能有不同的接口行为,升级时需注意兼容性。

总结

通过这个案例我们可以看到,在使用向量数据库时,理解其底层机制和接口规范非常重要。Deep-Searcher框架通过优化Milvus的查询配置,解决了搜索结果不返回的问题,同时也为开发者提供了性能优化的思路。在实际项目中,类似的细节优化往往能显著提升系统稳定性和性能。

登录后查看全文
热门项目推荐

项目优选

收起
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
49
337
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
348
382
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
872
517
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
179
263
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
131
184
kernelkernel
deepin linux kernel
C
22
5
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
335
1.09 K
harmony-utilsharmony-utils
harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
32
0
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0