Yaklang/Yakit 项目中 AI 辅助安全测试功能的探索
2025-06-03 08:12:06作者:彭桢灵Jeremy
在安全测试领域,自动化工具的智能化程度直接影响着测试效率。Yaklang/Yakit 作为一款新兴的安全测试工具,其社区近期针对 AI 辅助功能展开了深入讨论,特别是关于如何将 AI Agent 能力深度集成到安全测试工作流中。
AI Agent 在安全测试中的价值
AI Agent 技术能够理解自然语言指令并自动执行相应操作,这为安全测试带来了革命性的改变。传统安全测试工具需要用户手动配置各种参数和执行步骤,而 AI Agent 可以:
- 理解测试人员的自然语言需求
 - 自动选择合适的安全测试方法
 - 配置相关参数和测试数据
 - 执行测试并呈现结果
 
这种交互方式大大降低了安全测试的门槛,使得非专业安全人员也能快速开展基础安全测试工作。
Yaklang/Yakit 的现有 AI 能力
目前 Yaklang/Yakit 已经具备了一定的 AI 辅助能力:
- 代码生成:可以通过 AI 帮助生成 Yaklang 脚本代码
 - 插件调试:在 ChatCS 功能中,用户可以使用"插件调试执行"模式,让 AI 协助选择和配置插件
 
这些功能为安全测试人员提供了智能化的辅助,但仍有提升空间。
用户期待的 AI 增强功能
社区用户提出了更深入的 AI 集成需求,特别是在爆破测试场景中:
- 上下文感知:在数据包右键菜单中直接集成 AI 对话功能
 - 智能参数配置:根据自然语言指令自动选择测试数据(如 top10 用户名字典、top25 常用密码组合)
 - 交互式确认:提供 accept/reject 机制让用户确认 AI 的建议
 - 一键执行:确认后直接发送测试请求
 
这种工作流将极大提升爆破测试等重复性工作的效率,同时保持人工监督确保测试准确性。
技术实现考量
要实现这样的 AI Agent 功能,需要考虑以下技术要点:
- 上下文提取:如何从当前操作界面提取足够的上下文信息供 AI 决策
 - 操作映射:将 AI 的输出转化为具体的工具操作指令
 - 安全边界:确保 AI 建议的操作在安全可控范围内
 - 用户体验:设计直观的交互流程,平衡自动化效率和人工控制
 
未来发展方向
随着 AI 技术的进步,Yaklang/Yakit 在安全测试自动化方面还有很大潜力:
- 多步骤工作流:支持复杂的安全测试场景自动化
 - 学习能力:根据用户反馈不断优化 AI 建议
 - 知识库集成:结合安全知识库提供更专业的建议
 - 结果分析:自动分析测试结果并生成报告
 
这些发展方向将使 Yaklang/Yakit 成为更智能、更易用的安全测试平台。
结语
AI 与安全测试工具的结合正在改变传统的安全测试模式。Yaklang/Yakit 社区对这一趋势的讨论和实践,展现了开源项目在技术创新上的活力。随着 AI Agent 功能的不断完善,安全测试将变得更加高效和普及,这将对整个网络安全领域产生深远影响。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
104
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
598
158
暂无简介
Dart
566
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
249
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
101
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446