Yaklang/Yakit 项目中 AI 辅助安全测试功能的探索
2025-06-03 08:42:58作者:彭桢灵Jeremy
在安全测试领域,自动化工具的智能化程度直接影响着测试效率。Yaklang/Yakit 作为一款新兴的安全测试工具,其社区近期针对 AI 辅助功能展开了深入讨论,特别是关于如何将 AI Agent 能力深度集成到安全测试工作流中。
AI Agent 在安全测试中的价值
AI Agent 技术能够理解自然语言指令并自动执行相应操作,这为安全测试带来了革命性的改变。传统安全测试工具需要用户手动配置各种参数和执行步骤,而 AI Agent 可以:
- 理解测试人员的自然语言需求
- 自动选择合适的安全测试方法
- 配置相关参数和测试数据
- 执行测试并呈现结果
这种交互方式大大降低了安全测试的门槛,使得非专业安全人员也能快速开展基础安全测试工作。
Yaklang/Yakit 的现有 AI 能力
目前 Yaklang/Yakit 已经具备了一定的 AI 辅助能力:
- 代码生成:可以通过 AI 帮助生成 Yaklang 脚本代码
- 插件调试:在 ChatCS 功能中,用户可以使用"插件调试执行"模式,让 AI 协助选择和配置插件
这些功能为安全测试人员提供了智能化的辅助,但仍有提升空间。
用户期待的 AI 增强功能
社区用户提出了更深入的 AI 集成需求,特别是在爆破测试场景中:
- 上下文感知:在数据包右键菜单中直接集成 AI 对话功能
- 智能参数配置:根据自然语言指令自动选择测试数据(如 top10 用户名字典、top25 常用密码组合)
- 交互式确认:提供 accept/reject 机制让用户确认 AI 的建议
- 一键执行:确认后直接发送测试请求
这种工作流将极大提升爆破测试等重复性工作的效率,同时保持人工监督确保测试准确性。
技术实现考量
要实现这样的 AI Agent 功能,需要考虑以下技术要点:
- 上下文提取:如何从当前操作界面提取足够的上下文信息供 AI 决策
- 操作映射:将 AI 的输出转化为具体的工具操作指令
- 安全边界:确保 AI 建议的操作在安全可控范围内
- 用户体验:设计直观的交互流程,平衡自动化效率和人工控制
未来发展方向
随着 AI 技术的进步,Yaklang/Yakit 在安全测试自动化方面还有很大潜力:
- 多步骤工作流:支持复杂的安全测试场景自动化
- 学习能力:根据用户反馈不断优化 AI 建议
- 知识库集成:结合安全知识库提供更专业的建议
- 结果分析:自动分析测试结果并生成报告
这些发展方向将使 Yaklang/Yakit 成为更智能、更易用的安全测试平台。
结语
AI 与安全测试工具的结合正在改变传统的安全测试模式。Yaklang/Yakit 社区对这一趋势的讨论和实践,展现了开源项目在技术创新上的活力。随着 AI Agent 功能的不断完善,安全测试将变得更加高效和普及,这将对整个网络安全领域产生深远影响。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++098AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
203
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
84

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133