Sentence Transformers训练中的性能下降问题分析与解决方案
2025-05-13 04:03:06作者:羿妍玫Ivan
引言
在使用Sentence Transformers进行对比学习预训练时,研究人员发现了一个值得关注的现象:模型性能在训练初期达到峰值后,随着训练步数的增加反而出现下降。本文将通过分析这一现象,探讨其潜在原因,并提供有效的解决方案。
现象描述
在基于klue/roberta-large基础模型的预训练实验中,研究人员观察到:
- 最佳性能出现在训练的前50步(约5-10%的训练进度)
- 随着训练继续,MIRACL和MLDR基准测试的NDCG@10指标均呈现下降趋势
- 正负样本对的余弦相似度分布整体下移,相似度得分普遍降低
原因分析
1. 学习率设置问题
大规模批量训练(8192)需要调整学习率。根据经验法则,批量大小变化时,学习率应相应调整。对于8192的大批量,建议尝试5.6e-4的学习率(基于5e-5为64批量大小的基准)。
2. 任务目标不匹配
训练数据采用"标题-内容"对,而评估使用的是信息检索(IR)任务的"查询-文档"对。这种任务目标的不匹配导致模型在优化训练目标时,可能偏离了评估任务的需求。
3. 学习率预热影响
默认训练设置包含10%的学习率预热阶段,这与观察到的性能峰值时间点吻合,表明模型可能在预热结束后难以维持最佳状态。
解决方案
1. 学习率优化策略
建议尝试以下学习率调整方案:
- 逐步降低学习率(如从5e-5降至5e-6)
- 实施学习率调度策略
- 针对大批量训练调整学习率(约5.6e-4)
2. 数据格式转换
将训练数据从"标题-内容"对转换为更符合IR任务的"查询-文档"对格式。可通过以下方法实现:
- 基于文档内容生成相关查询
- 使用现有IR数据集进行微调
- 设计专门针对检索任务的对比学习目标
3. 训练监控机制
建立全面的训练监控体系:
- 同时跟踪训练损失和验证损失
- 定期在独立基准测试集上评估
- 监控余弦相似度分布变化
- 设置早停机制防止过拟合
实验验证
研究人员通过对比实验验证了上述分析:
- 训练损失和验证损失持续下降,排除过拟合可能
- 性能下降与任务目标不匹配高度相关
- 调整数据格式后,模型在IR任务上表现更稳定
结论
Sentence Transformers训练中的性能下降现象主要源于任务目标不匹配和学习率设置问题。通过调整数据格式、优化学习率策略和完善监控机制,可以有效解决这一问题。特别值得注意的是,在预训练阶段就应考虑最终应用场景,确保训练目标与评估目标的一致性。
对于信息检索类应用,建议直接使用"查询-文档"格式数据进行训练,而非通用的"标题-内容"对,这将显著提升模型在IR任务上的表现和训练稳定性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C083
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
82
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1