Sentence Transformers训练中的性能下降问题分析与解决方案
2025-05-13 05:14:29作者:羿妍玫Ivan
引言
在使用Sentence Transformers进行对比学习预训练时,研究人员发现了一个值得关注的现象:模型性能在训练初期达到峰值后,随着训练步数的增加反而出现下降。本文将通过分析这一现象,探讨其潜在原因,并提供有效的解决方案。
现象描述
在基于klue/roberta-large基础模型的预训练实验中,研究人员观察到:
- 最佳性能出现在训练的前50步(约5-10%的训练进度)
- 随着训练继续,MIRACL和MLDR基准测试的NDCG@10指标均呈现下降趋势
- 正负样本对的余弦相似度分布整体下移,相似度得分普遍降低
原因分析
1. 学习率设置问题
大规模批量训练(8192)需要调整学习率。根据经验法则,批量大小变化时,学习率应相应调整。对于8192的大批量,建议尝试5.6e-4的学习率(基于5e-5为64批量大小的基准)。
2. 任务目标不匹配
训练数据采用"标题-内容"对,而评估使用的是信息检索(IR)任务的"查询-文档"对。这种任务目标的不匹配导致模型在优化训练目标时,可能偏离了评估任务的需求。
3. 学习率预热影响
默认训练设置包含10%的学习率预热阶段,这与观察到的性能峰值时间点吻合,表明模型可能在预热结束后难以维持最佳状态。
解决方案
1. 学习率优化策略
建议尝试以下学习率调整方案:
- 逐步降低学习率(如从5e-5降至5e-6)
- 实施学习率调度策略
- 针对大批量训练调整学习率(约5.6e-4)
2. 数据格式转换
将训练数据从"标题-内容"对转换为更符合IR任务的"查询-文档"对格式。可通过以下方法实现:
- 基于文档内容生成相关查询
- 使用现有IR数据集进行微调
- 设计专门针对检索任务的对比学习目标
3. 训练监控机制
建立全面的训练监控体系:
- 同时跟踪训练损失和验证损失
- 定期在独立基准测试集上评估
- 监控余弦相似度分布变化
- 设置早停机制防止过拟合
实验验证
研究人员通过对比实验验证了上述分析:
- 训练损失和验证损失持续下降,排除过拟合可能
- 性能下降与任务目标不匹配高度相关
- 调整数据格式后,模型在IR任务上表现更稳定
结论
Sentence Transformers训练中的性能下降现象主要源于任务目标不匹配和学习率设置问题。通过调整数据格式、优化学习率策略和完善监控机制,可以有效解决这一问题。特别值得注意的是,在预训练阶段就应考虑最终应用场景,确保训练目标与评估目标的一致性。
对于信息检索类应用,建议直接使用"查询-文档"格式数据进行训练,而非通用的"标题-内容"对,这将显著提升模型在IR任务上的表现和训练稳定性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
664
152
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
659
298
Ascend Extension for PyTorch
Python
216
236
React Native鸿蒙化仓库
JavaScript
255
320
仓颉编译器源码及 cjdb 调试工具。
C++
133
866
仓颉编程语言运行时与标准库。
Cangjie
140
875
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.18 K
648
仓颉编程语言开发者文档。
59
818