AerialDetection 开源项目教程
2024-08-11 04:50:36作者:董斯意
项目介绍
AerialDetection 是一个用于构建航空图像中目标检测基准的开源项目。该项目基于 mmdetection 进行修改,支持 PyTorch 1.1 或更高版本。AerialDetection 的主要特点是支持航空图像中的定向目标检测,通过实现 OBB Head(OBBRoIHead 和 OBBDenseHead)以及将掩码预测转换为定向边界框(OBB)的功能,适应了航空图像中目标检测的需求。
项目快速启动
以下是 AerialDetection 项目的快速启动指南,包括安装和基本使用步骤。
安装
-
克隆仓库:
git clone https://github.com/dingjiansw101/AerialDetection.git cd AerialDetection -
安装依赖:
pip install -r requirements.txt -
编译扩展:
python setup.py develop
基本使用
- 初始化模型:
from mmdet.apis import init_detector, inference_detector import mmcv # 配置文件路径 config_file = 'configs/faster_rcnn_r50_fpn_1x.py' # 预训练模型权重路径 checkpoint_file = 'checkpoints/faster_rcnn_r50_fpn_1x_20181010-3d1b3351.pth' # 构建模型 model = init_detector(config_file, checkpoint_file, device='cuda:0') # 测试图像路径 img = 'test.jpg' # 进行推理 result = inference_detector(model, img) # 显示结果 model.show_result(img, result, out_file='result.jpg')
应用案例和最佳实践
AerialDetection 项目在航空图像分析领域有广泛的应用,以下是一些典型的应用案例和最佳实践:
应用案例
- 城市规划:通过检测航空图像中的建筑物和道路,帮助城市规划者更好地理解城市结构和发展趋势。
- 农业监测:利用航空图像检测农田中的作物分布和生长情况,为农业管理提供数据支持。
- 环境变化评估:通过航空图像快速评估区域环境变化情况,为相关工作提供依据。
最佳实践
- 数据预处理:确保输入的航空图像数据质量高,进行必要的预处理,如去噪、增强对比度等。
- 模型调优:根据具体应用场景调整模型参数,如学习率、批大小等,以获得最佳的检测效果。
- 多模型融合:结合多个检测模型,通过集成学习提高检测的准确性和鲁棒性。
典型生态项目
AerialDetection 项目与以下生态项目紧密相关,共同构成了航空图像分析的完整解决方案:
- mmdetection:AerialDetection 的基础框架,提供了丰富的目标检测算法和工具。
- mmcv:用于计算机视觉任务的计算机视觉库,提供了大量的预处理和后处理工具。
- Cython Bbox Overlaps:用于计算边界框重叠度的工具,是实现定向边界框检测的关键组件。
通过这些生态项目的协同工作,AerialDetection 能够提供高效、准确的目标检测解决方案,满足航空图像分析的各种需求。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178