XTuner训练中遇到TypeError问题的分析与解决
问题背景
在使用XTuner项目进行模型训练时,用户遇到了一个典型的TypeError错误:"forward() got an unexpected keyword argument 'input_ids'"。这个问题发生在使用InternLM2模型进行全参数微调时,而同样的配置在ChatGLM3模型上却能正常运行。
错误现象分析
错误日志显示,当尝试调用模型的forward方法时,系统收到了意外的'input_ids'参数。这种错误通常表明数据预处理阶段与模型输入期望之间存在不匹配。具体表现为:
- 训练命令正常启动,但在前向传播阶段失败
- 错误链显示问题出在DeepSpeed引擎的forward调用中
- 同样的配置在ChatGLM3模型上工作正常,说明问题具有模型特异性
根本原因
经过排查,发现问题出在数据加载器的配置上。用户在使用LengthGroupedSampler采样器时,遗漏了关键的collate_fn参数配置。正确的配置应该包含default_collate_fn,这个函数负责将批量数据整理成模型期望的格式。
解决方案
修复方法是在train_dataloader配置中显式添加collate_fn参数:
train_dataloader = dict(
batch_size=batch_size,
num_workers=dataloader_num_workers,
dataset=alpaca_en,
sampler=dict(
type=LengthGroupedSampler,
length_property='length',
per_device_batch_size=batch_size * accumulative_counts),
collate_fn=dict(type=default_collate_fn)
)
技术深度解析
-
collate_fn的作用:在PyTorch的数据加载流程中,collate_fn负责将单个样本组合成批量数据。default_collate_fn是XTuner提供的默认实现,它会正确处理各种数据类型并将其转换为模型期望的输入格式。
-
LengthGroupedSampler的特殊性:这种采样器会根据序列长度对样本进行分组,提高训练效率。但它改变了数据的组织方式,因此更需要正确的collate函数来保证数据格式。
-
模型差异:InternLM2和ChatGLM3可能有不同的输入处理逻辑,这也是为什么一个模型能工作而另一个失败的原因。
最佳实践建议
- 始终检查数据加载器的完整配置,特别是当使用自定义采样器时
- 对于新模型,先使用最简单的配置验证基本功能,再逐步添加复杂组件
- 当遇到类似"unexpected keyword argument"错误时,首先检查数据预处理流程
- 保持XTuner和相关依赖库的版本一致,避免兼容性问题
总结
这个案例展示了深度学习训练中一个常见但容易被忽视的问题:数据预处理与模型期望之间的不匹配。通过正确配置collate_fn,我们确保了数据在进入模型前被正确格式化,解决了TypeError问题。这也提醒我们在修改训练配置时需要全面考虑各个组件的相互影响。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00