首页
/ XTuner训练中遇到TypeError问题的分析与解决

XTuner训练中遇到TypeError问题的分析与解决

2025-06-13 10:35:49作者:邬祺芯Juliet

问题背景

在使用XTuner项目进行模型训练时,用户遇到了一个典型的TypeError错误:"forward() got an unexpected keyword argument 'input_ids'"。这个问题发生在使用InternLM2模型进行全参数微调时,而同样的配置在ChatGLM3模型上却能正常运行。

错误现象分析

错误日志显示,当尝试调用模型的forward方法时,系统收到了意外的'input_ids'参数。这种错误通常表明数据预处理阶段与模型输入期望之间存在不匹配。具体表现为:

  1. 训练命令正常启动,但在前向传播阶段失败
  2. 错误链显示问题出在DeepSpeed引擎的forward调用中
  3. 同样的配置在ChatGLM3模型上工作正常,说明问题具有模型特异性

根本原因

经过排查,发现问题出在数据加载器的配置上。用户在使用LengthGroupedSampler采样器时,遗漏了关键的collate_fn参数配置。正确的配置应该包含default_collate_fn,这个函数负责将批量数据整理成模型期望的格式。

解决方案

修复方法是在train_dataloader配置中显式添加collate_fn参数:

train_dataloader = dict(
    batch_size=batch_size,
    num_workers=dataloader_num_workers,
    dataset=alpaca_en,
    sampler=dict(
        type=LengthGroupedSampler,
        length_property='length',
        per_device_batch_size=batch_size * accumulative_counts),
    collate_fn=dict(type=default_collate_fn)
)

技术深度解析

  1. collate_fn的作用:在PyTorch的数据加载流程中,collate_fn负责将单个样本组合成批量数据。default_collate_fn是XTuner提供的默认实现,它会正确处理各种数据类型并将其转换为模型期望的输入格式。

  2. LengthGroupedSampler的特殊性:这种采样器会根据序列长度对样本进行分组,提高训练效率。但它改变了数据的组织方式,因此更需要正确的collate函数来保证数据格式。

  3. 模型差异:InternLM2和ChatGLM3可能有不同的输入处理逻辑,这也是为什么一个模型能工作而另一个失败的原因。

最佳实践建议

  1. 始终检查数据加载器的完整配置,特别是当使用自定义采样器时
  2. 对于新模型,先使用最简单的配置验证基本功能,再逐步添加复杂组件
  3. 当遇到类似"unexpected keyword argument"错误时,首先检查数据预处理流程
  4. 保持XTuner和相关依赖库的版本一致,避免兼容性问题

总结

这个案例展示了深度学习训练中一个常见但容易被忽视的问题:数据预处理与模型期望之间的不匹配。通过正确配置collate_fn,我们确保了数据在进入模型前被正确格式化,解决了TypeError问题。这也提醒我们在修改训练配置时需要全面考虑各个组件的相互影响。

登录后查看全文
热门项目推荐

项目优选

收起
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
176
261
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300
kernelkernel
deepin linux kernel
C
22
5
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
595
57
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K