DeepLabCut在M4芯片MacBook上的安装与问题解决指南
2025-06-09 16:16:59作者:田桥桑Industrious
背景介绍
DeepLabCut作为一款流行的开源动物行为分析工具,在科研领域有着广泛应用。然而,随着苹果公司推出新一代M4芯片的MacBook Pro,用户在安装过程中遇到了新的兼容性问题。本文将详细介绍在搭载M4芯片的MacBook Pro上安装DeepLabCut的完整解决方案。
问题现象
用户在M4芯片的MacBook Pro上安装DeepLabCut时遇到了两种典型情况:
- 使用标准配置文件安装后,GUI启动时出现ImportError错误
- 尝试使用针对Apple Silicon的配置文件时,pip安装过程失败
错误信息显示与cffi/libffi和pyobj相关的符号_ffi_find_closure_for_code_np无法找到,导致GUI无法正常启动。
环境准备
在开始安装前,需要确保以下准备工作已完成:
- 安装Miniconda3(推荐使用官方指南)
- 确保命令行git工具已安装
- 操作系统版本为macOS Sequoia 15.3或更高
解决方案
经过社区验证,以下配置文件可完美解决M4芯片MacBook上的安装问题:
name: DEEPLABCUT_M4
channels:
- defaults
dependencies:
- python=3.10
- conda-forge::pip
- pip:
- pytorch
- torchvision
- torchaudio
- conda-forge::ipython
- conda-forge::jupyter
- conda-forge::nb_conda
- conda-forge::notebook<7.0.0
- conda-forge::python.app
- conda-forge::ffmpeg
- conda-forge::pytables==3.8.0
- pip:
- 'git+https://github.com/DeepLabCut/DeepLabCut.git@pytorch_dlc#egg=deeplabcut[gui,apple_mchips]'
安装步骤
- 将上述配置文件保存为
DEEPLABCUT_M4.yaml - 在终端中切换到yaml文件所在目录
- 运行命令创建conda环境:
conda env create -f DEEPLABCUT_M4.yaml - 激活环境:
conda activate DEEPLABCUT_M4 - 启动GUI:
python -m deeplabcut
技术要点解析
该解决方案的关键改进在于:
- 明确指定Python 3.10版本,确保兼容性
- 通过conda-forge渠道获取pip,避免依赖冲突
- 使用pip直接安装PyTorch套件,而非通过conda
- 固定pytables版本为3.8.0,避免潜在的兼容性问题
- 直接从GitHub仓库安装特定分支的DeepLabCut,确保包含对Apple芯片的最新支持
注意事项
- GUI启动可能需要较长时间,请耐心等待
- 建议在安装前关闭其他占用系统资源的应用程序
- 如果遇到网络问题,可尝试更换conda镜像源
- 确保系统有足够的存储空间(建议至少10GB可用空间)
总结
随着苹果芯片架构的更新,科学计算软件的安装配置也需要相应调整。本文提供的解决方案已在M4芯片MacBook Pro上验证通过,能够完美运行DeepLabCut及其GUI界面。对于科研工作者而言,掌握这类问题的解决方法将大大提高工作效率。
未来随着DeepLabCut官方对Apple Silicon支持的不断完善,安装过程可能会进一步简化。建议用户关注项目更新,及时获取最新的兼容性改进。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1