DeepLabCut在M4芯片MacBook上的安装与问题解决指南
2025-06-09 14:07:34作者:田桥桑Industrious
背景介绍
DeepLabCut作为一款流行的开源动物行为分析工具,在科研领域有着广泛应用。然而,随着苹果公司推出新一代M4芯片的MacBook Pro,用户在安装过程中遇到了新的兼容性问题。本文将详细介绍在搭载M4芯片的MacBook Pro上安装DeepLabCut的完整解决方案。
问题现象
用户在M4芯片的MacBook Pro上安装DeepLabCut时遇到了两种典型情况:
- 使用标准配置文件安装后,GUI启动时出现ImportError错误
- 尝试使用针对Apple Silicon的配置文件时,pip安装过程失败
错误信息显示与cffi/libffi和pyobj相关的符号_ffi_find_closure_for_code_np无法找到,导致GUI无法正常启动。
环境准备
在开始安装前,需要确保以下准备工作已完成:
- 安装Miniconda3(推荐使用官方指南)
- 确保命令行git工具已安装
- 操作系统版本为macOS Sequoia 15.3或更高
解决方案
经过社区验证,以下配置文件可完美解决M4芯片MacBook上的安装问题:
name: DEEPLABCUT_M4
channels:
- defaults
dependencies:
- python=3.10
- conda-forge::pip
- pip:
- pytorch
- torchvision
- torchaudio
- conda-forge::ipython
- conda-forge::jupyter
- conda-forge::nb_conda
- conda-forge::notebook<7.0.0
- conda-forge::python.app
- conda-forge::ffmpeg
- conda-forge::pytables==3.8.0
- pip:
- 'git+https://github.com/DeepLabCut/DeepLabCut.git@pytorch_dlc#egg=deeplabcut[gui,apple_mchips]'
安装步骤
- 将上述配置文件保存为
DEEPLABCUT_M4.yaml - 在终端中切换到yaml文件所在目录
- 运行命令创建conda环境:
conda env create -f DEEPLABCUT_M4.yaml - 激活环境:
conda activate DEEPLABCUT_M4 - 启动GUI:
python -m deeplabcut
技术要点解析
该解决方案的关键改进在于:
- 明确指定Python 3.10版本,确保兼容性
- 通过conda-forge渠道获取pip,避免依赖冲突
- 使用pip直接安装PyTorch套件,而非通过conda
- 固定pytables版本为3.8.0,避免潜在的兼容性问题
- 直接从GitHub仓库安装特定分支的DeepLabCut,确保包含对Apple芯片的最新支持
注意事项
- GUI启动可能需要较长时间,请耐心等待
- 建议在安装前关闭其他占用系统资源的应用程序
- 如果遇到网络问题,可尝试更换conda镜像源
- 确保系统有足够的存储空间(建议至少10GB可用空间)
总结
随着苹果芯片架构的更新,科学计算软件的安装配置也需要相应调整。本文提供的解决方案已在M4芯片MacBook Pro上验证通过,能够完美运行DeepLabCut及其GUI界面。对于科研工作者而言,掌握这类问题的解决方法将大大提高工作效率。
未来随着DeepLabCut官方对Apple Silicon支持的不断完善,安装过程可能会进一步简化。建议用户关注项目更新,及时获取最新的兼容性改进。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218