Kube-Hetzner项目中的Cluster Autoscaler镜像变更问题解析
在Kubernetes集群管理领域,Hetzner Cloud是一个颇受欢迎的云服务提供商。近期,使用Kube-Hetzner项目的用户需要注意一个重要变更:Hetzner官方将停止维护其自定义的Cluster Autoscaler镜像,并建议用户迁移到Kubernetes社区维护的标准镜像。
背景说明
Cluster Autoscaler是Kubernetes生态中负责根据工作负载自动调整节点数量的关键组件。在Hetzner Cloud环境中,该项目原先默认使用了Hetzner提供的定制镜像(docker.io/hetznercloud/cluster-autoscaler)。这一设计选择现在需要进行调整。
变更原因
此次变更源于两个技术因素:
-
CX11实例类型淘汰:Hetzner Cloud计划淘汰CX11这种共享vCPU的实例类型。旧版Cluster Autoscaler中存在一个缺陷,使其依赖CX11实例类型信息,这会导致在CX11完全下线后功能异常。
-
镜像维护策略调整:Hetzner决定停止维护其自定义的Cluster Autoscaler镜像,转而推荐用户使用Kubernetes社区官方维护的镜像(registry.k8s.io/autoscaling/cluster-autoscaler)。
影响范围
这一变更会影响所有使用Kube-Hetzner项目并启用了Cluster Autoscaler功能的用户。具体表现为:
- 11月4日后,未升级的Cluster Autoscaler将无法正常工作
- 11月19日后,Hetzner自定义镜像将被完全移除
解决方案
项目维护团队已经通过PR #1506解决了这个问题。新版本将默认使用Kubernetes社区维护的官方镜像。用户需要:
-
确保使用的Cluster Autoscaler版本符合以下要求:
- ≥ 1.28.7
- ≥ 1.29.5
- ≥ 1.30.2
- ≥ 1.31.1
-
如果之前使用了Hetzner自定义镜像,需要迁移到官方镜像
技术建议
对于运维团队,我们建议:
- 尽快规划升级窗口,避免服务中断
- 测试新版本Cluster Autoscaler与现有工作负载的兼容性
- 监控升级后的集群自动扩展行为是否正常
- 更新相关文档和自动化脚本中的镜像引用
总结
这次变更反映了云服务商优化其基础设施的常见过程。Kube-Hetzner项目团队积极响应,确保了解决方案的及时提供。作为用户,理解这些底层变化并采取相应行动,是维护Kubernetes集群稳定运行的关键。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00