Kube-Hetzner项目中的Cluster Autoscaler镜像变更问题解析
在Kubernetes集群管理领域,Hetzner Cloud是一个颇受欢迎的云服务提供商。近期,使用Kube-Hetzner项目的用户需要注意一个重要变更:Hetzner官方将停止维护其自定义的Cluster Autoscaler镜像,并建议用户迁移到Kubernetes社区维护的标准镜像。
背景说明
Cluster Autoscaler是Kubernetes生态中负责根据工作负载自动调整节点数量的关键组件。在Hetzner Cloud环境中,该项目原先默认使用了Hetzner提供的定制镜像(docker.io/hetznercloud/cluster-autoscaler)。这一设计选择现在需要进行调整。
变更原因
此次变更源于两个技术因素:
-
CX11实例类型淘汰:Hetzner Cloud计划淘汰CX11这种共享vCPU的实例类型。旧版Cluster Autoscaler中存在一个缺陷,使其依赖CX11实例类型信息,这会导致在CX11完全下线后功能异常。
-
镜像维护策略调整:Hetzner决定停止维护其自定义的Cluster Autoscaler镜像,转而推荐用户使用Kubernetes社区官方维护的镜像(registry.k8s.io/autoscaling/cluster-autoscaler)。
影响范围
这一变更会影响所有使用Kube-Hetzner项目并启用了Cluster Autoscaler功能的用户。具体表现为:
- 11月4日后,未升级的Cluster Autoscaler将无法正常工作
- 11月19日后,Hetzner自定义镜像将被完全移除
解决方案
项目维护团队已经通过PR #1506解决了这个问题。新版本将默认使用Kubernetes社区维护的官方镜像。用户需要:
-
确保使用的Cluster Autoscaler版本符合以下要求:
- ≥ 1.28.7
- ≥ 1.29.5
- ≥ 1.30.2
- ≥ 1.31.1
-
如果之前使用了Hetzner自定义镜像,需要迁移到官方镜像
技术建议
对于运维团队,我们建议:
- 尽快规划升级窗口,避免服务中断
- 测试新版本Cluster Autoscaler与现有工作负载的兼容性
- 监控升级后的集群自动扩展行为是否正常
- 更新相关文档和自动化脚本中的镜像引用
总结
这次变更反映了云服务商优化其基础设施的常见过程。Kube-Hetzner项目团队积极响应,确保了解决方案的及时提供。作为用户,理解这些底层变化并采取相应行动,是维护Kubernetes集群稳定运行的关键。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









