TensorRT车牌识别Demo实战指南
2024-09-11 16:36:33作者:温玫谨Lighthearted
1. 项目介绍
本项目lp_recognition_TensorRT提供了一个基于TensorRT的车牌识别演示示例。利用深度学习技术,特别是VGG-BiLSTM-CTC架构,它实现了高效的车牌字符识别功能。该项目通过TensorRT进行模型优化,旨在加速推理过程,适用于对实时性要求较高的场景。开源在GitHub上的WelY1/lp_recognition_TensorRT,采用Apache-2.0许可协议。
2. 项目快速启动
要快速启动此项目,你需要确保已安装必要的依赖项,包括Python环境、TensorRT库、ONNX Runtime以及相关的深度学习库。以下是简化的启动步骤:
环境准备
-
安装基础环境: 确保你的系统中安装了Python 3.x。
-
安装依赖: 在项目根目录下运行以下命令以安装所需Python包:
pip install -r requirements.txt
构建与转换模型
-
ONNX模型转换: 如果你已有PyTorch模型,首先将其转换为ONNX格式。此项目假设你已经有了转换好的ONNX模型或者可以直接使用提供的模型。
-
TensorRT Engine构建: 使用TensorRT进行模型优化和引擎创建。执行以下指令,注意替换
model.onnx
为你自己的ONNX模型路径:cd <TensorRT root directory>/samples/trtexec && make cd <TensorRT root directory>/bin trtexec --onnx=model.onnx --workspace=1024 --fp16
将生成的
.engine
文件用于接下来的推理。
运行推理
- 测试推理: 使用
infer_trt.py
脚本,指定生成的.engine
文件进行车牌识别:python infer_trt.py --engine=your_engine_file.engine
3. 应用案例和最佳实践
在这个项目中,最佳实践包括:
- 在实际部署时,为了适应不同环境下的性能需求,调整FP16或FP32精度,并考虑模型的批处理大小。
- 对于新数据集,可先通过PyTorch训练模型,然后转换至ONNX再优化为TensorRT模型,保持高效率的同时保证识别效果。
- 利用项目的预测结果对比,如上述提到的在RTX 3080上的测试,来评估性能和准确性。
4. 典型生态项目
虽然此项目专注车牌识别的TensorRT实现,其生态可以扩展至更广泛的领域,比如:
- 智能交通系统: 结合视频流分析,用于车辆管理、违法监测等。
- 物联网(IoT)设备集成: 在边缘计算设备上部署,实现实时的车牌识别功能。
- 安防监控: 提升监控系统的自动化水平,辅助识别特定车辆。
社区贡献和二次开发是开源项目生命力的体现,鼓励开发者根据自身应用场景,进一步定制化和优化模型,将此技术融入更加丰富的应用场景之中。
以上是针对给定开源项目lp_recognition_TensorRT的基础使用教程,遵循这些步骤,你就能快速搭建起基于TensorRT的车牌识别系统。记得在实践中根据实际情况调整配置,以达到最佳的性能表现。
热门项目推荐
相关项目推荐
鸿蒙开发工具大赶集
本仓将收集和展示鸿蒙开发工具,欢迎大家踊跃投稿。通过pr附上您的工具介绍和使用指南,并加上工具对应的链接,通过的工具将会成功上架到我们社区。012hertz
Go 微服务 HTTP 框架,具有高易用性、高性能、高扩展性等特点。Go01每日精选项目
🔥🔥 每日精选已经升级为:【行业动态】,快去首页看看吧,后续都在【首页 - 行业动态】内更新,多条更新哦~🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~029kitex
Go 微服务 RPC 框架,具有高性能、强可扩展的特点。Go00Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie058毕方Talon工具
本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python040PDFMathTranslate
PDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython06mybatis-plus
mybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区018- DDeepSeek-R1探索新一代推理模型,DeepSeek-R1系列以大规模强化学习为基础,实现自主推理,表现卓越,推理行为强大且独特。开源共享,助力研究社区深入探索LLM推理能力,推动行业发展。【此简介由AI生成】Python00
热门内容推荐
最新内容推荐
项目优选
收起

Python - 100天从新手到大师
Python
611
115

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
286
79

✍ WeChat Markdown Editor | 一款高度简洁的微信 Markdown 编辑器:支持 Markdown 语法、色盘取色、多图上传、一键下载文档、自定义 CSS 样式、一键重置等特性
Vue
112
25

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
60
48

🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
45
29

🦄🦄🦄AI赋能股票分析:自选股行情获取,成本盈亏展示,涨跌报警推送,市场整体/个股情绪分析,K线技术指标分析等。数据全部保留在本地。支持DeepSeek,OpenAI, Ollama,LMStudio,AnythingLLM,硅基流动,火山方舟,阿里云百炼等平台或模型。
Go
1
0

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
205
58

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
383
36

🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
182
44

这是一个人工生命试验项目,最终目标是创建“有自我意识表现”的模拟生命体。
Java
8
0