Lakehouse Engine 使用教程
2024-08-27 12:59:08作者:宣聪麟
项目介绍
Lakehouse Engine 是一个配置驱动的 Spark 框架,使用 Python 编写,旨在为数据产品提供可扩展和分布式的引擎,支持多种湖仓算法、数据流和实用工具。该项目由 adidas 维护,遵循 Apache-2.0 许可证。
项目快速启动
安装
首先,克隆项目仓库:
git clone https://github.com/adidas/lakehouse-engine.git
cd lakehouse-engine
安装核心功能:
pip install lakehouse_engine
如果需要使用数据质量(DQ)功能,可以安装包含 DQ 依赖的版本:
pip install lakehouse_engine[dq]
示例代码
以下是一个简单的示例,展示如何使用 Lakehouse Engine 进行数据处理:
from lakehouse_engine.core.engine import LakehouseEngine
# 初始化引擎
engine = LakehouseEngine()
# 配置数据处理任务
config = {
"source": "path/to/source/data",
"destination": "path/to/destination/data",
"transformations": [
{"type": "filter", "condition": "column > 10"},
{"type": "rename", "columns": {"old_name": "new_name"}}
]
}
# 执行任务
engine.run(config)
应用案例和最佳实践
数据质量管理
Lakehouse Engine 提供了强大的数据质量管理功能,可以通过配置文件定义数据质量规则,并自动执行检查。以下是一个数据质量管理的示例配置:
{
"dq_rules": [
{"rule": "expect_column_values_to_be_unique", "column": "id"},
{"rule": "expect_column_values_to_not_be_null", "column": "name"}
]
}
数据流水线
Lakehouse Engine 支持复杂的数据流水线,可以将多个数据处理任务串联起来,实现端到端的数据处理流程。以下是一个数据流水线的示例配置:
{
"pipeline": [
{"task": "load_data", "source": "path/to/source/data"},
{"task": "transform_data", "transformations": [
{"type": "filter", "condition": "column > 10"},
{"type": "rename", "columns": {"old_name": "new_name"}}
]},
{"task": "save_data", "destination": "path/to/destination/data"}
]
}
典型生态项目
Delta Lake
Delta Lake 是一个开源存储层,为数据湖带来了 ACID 事务和可扩展的元数据处理能力。Lakehouse Engine 与 Delta Lake 紧密集成,提供了高效的数据湖管理功能。
Great Expectations
Great Expectations 是一个数据质量工具,可以帮助用户定义和验证数据质量规则。Lakehouse Engine 通过集成 Great Expectations,提供了强大的数据质量管理能力。
Databricks
Databricks 是一个统一的数据分析平台,提供了强大的数据处理和分析能力。Lakehouse Engine 可以与 Databricks 无缝集成,实现高效的数据处理和分析。
通过以上内容,您可以快速了解并开始使用 Lakehouse Engine,结合实际应用案例和最佳实践,充分发挥其强大的数据处理和分析能力。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355