首页
/ Lakehouse Engine 使用教程

Lakehouse Engine 使用教程

2024-08-27 18:40:18作者:宣聪麟

项目介绍

Lakehouse Engine 是一个配置驱动的 Spark 框架,使用 Python 编写,旨在为数据产品提供可扩展和分布式的引擎,支持多种湖仓算法、数据流和实用工具。该项目由 adidas 维护,遵循 Apache-2.0 许可证。

项目快速启动

安装

首先,克隆项目仓库:

git clone https://github.com/adidas/lakehouse-engine.git
cd lakehouse-engine

安装核心功能:

pip install lakehouse_engine

如果需要使用数据质量(DQ)功能,可以安装包含 DQ 依赖的版本:

pip install lakehouse_engine[dq]

示例代码

以下是一个简单的示例,展示如何使用 Lakehouse Engine 进行数据处理:

from lakehouse_engine.core.engine import LakehouseEngine

# 初始化引擎
engine = LakehouseEngine()

# 配置数据处理任务
config = {
    "source": "path/to/source/data",
    "destination": "path/to/destination/data",
    "transformations": [
        {"type": "filter", "condition": "column > 10"},
        {"type": "rename", "columns": {"old_name": "new_name"}}
    ]
}

# 执行任务
engine.run(config)

应用案例和最佳实践

数据质量管理

Lakehouse Engine 提供了强大的数据质量管理功能,可以通过配置文件定义数据质量规则,并自动执行检查。以下是一个数据质量管理的示例配置:

{
    "dq_rules": [
        {"rule": "expect_column_values_to_be_unique", "column": "id"},
        {"rule": "expect_column_values_to_not_be_null", "column": "name"}
    ]
}

数据流水线

Lakehouse Engine 支持复杂的数据流水线,可以将多个数据处理任务串联起来,实现端到端的数据处理流程。以下是一个数据流水线的示例配置:

{
    "pipeline": [
        {"task": "load_data", "source": "path/to/source/data"},
        {"task": "transform_data", "transformations": [
            {"type": "filter", "condition": "column > 10"},
            {"type": "rename", "columns": {"old_name": "new_name"}}
        ]},
        {"task": "save_data", "destination": "path/to/destination/data"}
    ]
}

典型生态项目

Delta Lake

Delta Lake 是一个开源存储层,为数据湖带来了 ACID 事务和可扩展的元数据处理能力。Lakehouse Engine 与 Delta Lake 紧密集成,提供了高效的数据湖管理功能。

Great Expectations

Great Expectations 是一个数据质量工具,可以帮助用户定义和验证数据质量规则。Lakehouse Engine 通过集成 Great Expectations,提供了强大的数据质量管理能力。

Databricks

Databricks 是一个统一的数据分析平台,提供了强大的数据处理和分析能力。Lakehouse Engine 可以与 Databricks 无缝集成,实现高效的数据处理和分析。

通过以上内容,您可以快速了解并开始使用 Lakehouse Engine,结合实际应用案例和最佳实践,充分发挥其强大的数据处理和分析能力。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.93 K
kernelkernel
deepin linux kernel
C
22
6
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
423
392
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
64
511