Lakehouse Engine 使用教程
2024-08-27 18:08:44作者:宣聪麟
项目介绍
Lakehouse Engine 是一个配置驱动的 Spark 框架,使用 Python 编写,旨在为数据产品提供可扩展和分布式的引擎,支持多种湖仓算法、数据流和实用工具。该项目由 adidas 维护,遵循 Apache-2.0 许可证。
项目快速启动
安装
首先,克隆项目仓库:
git clone https://github.com/adidas/lakehouse-engine.git
cd lakehouse-engine
安装核心功能:
pip install lakehouse_engine
如果需要使用数据质量(DQ)功能,可以安装包含 DQ 依赖的版本:
pip install lakehouse_engine[dq]
示例代码
以下是一个简单的示例,展示如何使用 Lakehouse Engine 进行数据处理:
from lakehouse_engine.core.engine import LakehouseEngine
# 初始化引擎
engine = LakehouseEngine()
# 配置数据处理任务
config = {
"source": "path/to/source/data",
"destination": "path/to/destination/data",
"transformations": [
{"type": "filter", "condition": "column > 10"},
{"type": "rename", "columns": {"old_name": "new_name"}}
]
}
# 执行任务
engine.run(config)
应用案例和最佳实践
数据质量管理
Lakehouse Engine 提供了强大的数据质量管理功能,可以通过配置文件定义数据质量规则,并自动执行检查。以下是一个数据质量管理的示例配置:
{
"dq_rules": [
{"rule": "expect_column_values_to_be_unique", "column": "id"},
{"rule": "expect_column_values_to_not_be_null", "column": "name"}
]
}
数据流水线
Lakehouse Engine 支持复杂的数据流水线,可以将多个数据处理任务串联起来,实现端到端的数据处理流程。以下是一个数据流水线的示例配置:
{
"pipeline": [
{"task": "load_data", "source": "path/to/source/data"},
{"task": "transform_data", "transformations": [
{"type": "filter", "condition": "column > 10"},
{"type": "rename", "columns": {"old_name": "new_name"}}
]},
{"task": "save_data", "destination": "path/to/destination/data"}
]
}
典型生态项目
Delta Lake
Delta Lake 是一个开源存储层,为数据湖带来了 ACID 事务和可扩展的元数据处理能力。Lakehouse Engine 与 Delta Lake 紧密集成,提供了高效的数据湖管理功能。
Great Expectations
Great Expectations 是一个数据质量工具,可以帮助用户定义和验证数据质量规则。Lakehouse Engine 通过集成 Great Expectations,提供了强大的数据质量管理能力。
Databricks
Databricks 是一个统一的数据分析平台,提供了强大的数据处理和分析能力。Lakehouse Engine 可以与 Databricks 无缝集成,实现高效的数据处理和分析。
通过以上内容,您可以快速了解并开始使用 Lakehouse Engine,结合实际应用案例和最佳实践,充分发挥其强大的数据处理和分析能力。
登录后查看全文
热门项目推荐
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
cherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端TypeScript045note-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。TSX02chatgpt-on-wechat
基于大模型搭建的聊天机器人,同时支持 微信公众号、企业微信应用、飞书、钉钉 等接入,可选择GPT3.5/GPT-4o/GPT-o1/ DeepSeek/Claude/文心一言/讯飞星火/通义千问/ Gemini/GLM-4/Claude/Kimi/LinkAI,能处理文本、语音和图片,访问操作系统和互联网,支持基于自有知识库进行定制企业智能客服。Python021
热门内容推荐
1 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析2 freeCodeCamp音乐播放器项目中的函数调用问题解析3 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 4 freeCodeCamp博客页面工作坊中的断言方法优化建议5 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析6 freeCodeCamp论坛排行榜项目中的错误日志规范要求7 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析8 freeCodeCamp课程页面空白问题的技术分析与解决方案9 freeCodeCamp课程视频测验中的Tab键导航问题解析10 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析
最新内容推荐
左手Annotators,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手controlnet-openpose-sdxl-1.0,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手ERNIE-4.5-VL-424B-A47B-Paddle,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手m3e-base,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手SDXL-Lightning,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手wav2vec2-base-960h,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手nsfw_image_detection,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手XTTS-v2,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手whisper-large-v3,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手flux-ip-adapter,右手GPT-4:企业AI战略的“开源”与“闭源”之辩
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
706
459

React Native鸿蒙化仓库
C++
141
224

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
53
15

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
114
255

openGauss kernel ~ openGauss is an open source relational database management system
C++
102
159

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
302
1.04 K

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.02 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
363
355

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
531
45

① 行代码,实现自动化办公
Python
21
14