TarsosLSH 项目使用教程
2024-09-14 17:42:14作者:裴锟轩Denise
1. 项目介绍
TarsosLSH 是一个用 Java 实现的局部敏感哈希(Locality Sensitive Hashing, LSH)库,主要用于多维向量的近似最近邻搜索。LSH 是一种在子线性时间内运行的实用最近邻搜索算法,适用于高维数据集。TarsosLSH 支持多种 LSH 家族,包括欧几里得哈希家族(L2)、城市块哈希家族(L1)和余弦哈希家族。
该项目旨在在功能强大到足以完成实际任务的同时,保持简洁,以便作为 LSH 工作原理的演示。
2. 项目快速启动
2.1 环境准备
在开始之前,确保你的系统上安装了以下工具:
- Java 开发环境(JDK)
- Apache Ant
- Git
2.2 下载和构建项目
首先,克隆 TarsosLSH 的代码库:
git clone https://github.com/JorenSix/TarsosLSH.git
cd TarsosLSH
然后,使用 Apache Ant 构建项目:
ant build
ant javadoc
构建成功后,你可以在 TarsosLSH/build 目录下找到生成的 JAR 文件,以及在 TarsosLSH/doc 目录下找到 API 文档。
2.3 运行示例
你可以通过以下命令运行一个简单的示例:
java -jar TarsosLSH.jar
这将使用 LSH 在随机数据集上运行。
3. 应用案例和最佳实践
3.1 应用案例
TarsosLSH 可以应用于多种场景,例如:
- 图像检索:通过将图像特征向量化,使用 LSH 快速找到相似图像。
- 文本相似度搜索:将文档向量化后,使用 LSH 快速找到相似文档。
- 推荐系统:通过 LSH 快速找到与用户兴趣相似的其他用户或物品。
3.2 最佳实践
- 选择合适的哈希家族:根据数据集的特性选择合适的哈希家族(如 L1、L2 或余弦距离)。
- 调整参数:根据实际需求调整哈希数量(
-h)和哈希表数量(-t),以平衡查询性能和存储空间。 - 数据预处理:在进行 LSH 之前,确保数据已经过适当的预处理(如归一化)。
4. 典型生态项目
TarsosLSH 作为一个独立的 Java 库,可以与其他 Java 项目集成。以下是一些可能与 TarsosLSH 结合使用的典型生态项目:
- Apache Mahout:一个用于机器学习和数据挖掘的库,可以与 TarsosLSH 结合进行高维数据的相似度搜索。
- Lucene:一个全文搜索引擎库,可以与 TarsosLSH 结合进行文本相似度搜索。
- Weka:一个用于数据挖掘的机器学习库,可以与 TarsosLSH 结合进行数据分析和模式识别。
通过这些生态项目的结合,TarsosLSH 可以在更广泛的场景中发挥作用,提升数据处理和分析的效率。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Launch4j中文版:Java应用程序打包成EXE的终极解决方案
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
暂无简介
Dart
655
149
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
642
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
仓颉编译器源码及 cjdb 调试工具。
C++
130
864
React Native鸿蒙化仓库
JavaScript
251
320
仓颉编程语言运行时与标准库。
Cangjie
138
874