Datatrove项目中使用Minhash进行文本去重的最佳实践
2025-07-02 19:53:32作者:滕妙奇
概述
在自然语言处理和大规模文本数据处理中,数据去重是一个至关重要的预处理步骤。Datatrove作为一个强大的数据处理工具库,提供了基于Minhash算法的文本去重功能。本文将详细介绍如何在Datatrove项目中正确配置和使用Minhash去重流程,特别是针对本地执行环境中的常见问题解决方案。
Minhash去重原理简介
Minhash是一种高效的近似文本相似度计算方法,特别适合大规模数据集。它通过将文本内容转化为固定长度的签名(signature),然后比较这些签名来估计文本之间的相似度。Datatrove实现了完整的Minhash去重流程,包括四个主要阶段:
- 签名计算阶段:为每个文本生成Minhash签名
- 桶处理阶段:将相似签名分组到桶中
- 聚类阶段:识别重复文本簇
- 过滤阶段:移除重复文本
本地执行环境配置
在本地环境中使用Datatrove进行Minhash去重时,需要注意Python多进程编程的特殊要求。特别是当使用LocalPipelineExecutor时,必须确保主模块的正确结构:
if __name__ == "__main__":
# 你的管道配置和执行代码
这种结构是必要的,因为Python的多进程模块需要在主程序中正确初始化。缺少这个保护会导致常见的"RuntimeError: An attempt has been made to start a new process..."错误。
完整配置示例
以下是一个完整的本地执行配置示例,包含了所有必要的参数和阶段配置:
from datatrove.executor import LocalPipelineExecutor
from datatrove.pipeline.dedup import MinhashDedupSignature
from datatrove.pipeline.readers import HuggingFaceDatasetReader
from datatrove.pipeline.dedup.minhash import (
MinhashConfig,
MinhashDedupBuckets,
MinhashDedupCluster,
MinhashDedupFilter,
)
from datatrove.pipeline.writers.jsonl import JsonlWriter
from datatrove.utils.hashing import HashConfig
from datatrove.utils.typeshelper import Languages
# Minhash算法配置
minhash_config = MinhashConfig(
hash_config=HashConfig(precision=64), # 哈希精度
num_buckets=14, # 桶数量
hashes_per_bucket=8, # 每个桶的哈希数量
)
# 本地路径配置
LOCAL_PATH = "数据存储路径"
LOCAL_LOGS_PATH = f"{LOCAL_PATH}/logs"
TOTAL_TASKS = 100 # 总任务数
if __name__ == "__main__":
# 第一阶段:计算签名
stage1 = LocalPipelineExecutor(
pipeline=[
HuggingFaceDatasetReader("数据集名称", {"split": "train"}, text_key="text"),
MinhashDedupSignature(
output_folder=f"{LOCAL_PATH}/signatures",
config=minhash_config,
language=Languages.english
),
],
tasks=TOTAL_TASKS,
workers=TOTAL_TASKS,
logging_dir=f"{LOCAL_LOGS_PATH}/signatures",
)
# 后续阶段配置...
# 执行管道
stage1.run()
关键配置参数解析
-
MinhashConfig:
hash_config.precision: 控制哈希精度,值越高碰撞概率越低num_buckets: 影响去重精度和性能的平衡hashes_per_bucket: 每个桶使用的哈希函数数量
-
执行器配置:
tasks: 控制并行处理的任务数量workers: 实际工作进程数logging_dir: 日志存储路径
性能优化建议
- 根据硬件资源合理设置
tasks和workers参数 - 对于大型数据集,适当增加
num_buckets可以提高去重精度 - 监控内存使用情况,必要时调整
hashes_per_bucket参数 - 使用高性能存储介质存放中间结果,特别是签名和桶数据
常见问题解决
-
多进程初始化错误:
- 确保主程序有
if __name__ == "__main__":保护 - 检查Python版本和依赖库兼容性
- 确保主程序有
-
内存不足:
- 减少
workers数量 - 降低
hashes_per_bucket值
- 减少
-
性能瓶颈:
- 考虑使用分布式执行器替代本地执行器
- 优化数据读取和存储路径的I/O性能
通过正确配置和使用Datatrove的Minhash去重功能,可以高效地处理大规模文本数据集,为后续的NLP任务提供更干净、更高质量的数据输入。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
135
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218