Datatrove项目中Minhash去重实现差异分析
背景介绍
在数据预处理领域,去重是一个关键步骤。Datatrove作为Hugging Face生态系统中的一个数据处理工具,提供了基于Minhash算法的去重功能。本文探讨了Datatrove与其他实现(如Spark版本)在去重效果上的差异问题。
问题现象
用户在使用Datatrove对StackMathQA数据集进行Minhash去重时发现,与基于Spark的实现相比,Datatrove的去重率明显较低。具体表现为:
- Spark实现去除了88%的原始内容
- Datatrove仅去除了60%的内容
参数配置分析
两种实现使用了相同的核心参数配置:
- n-gram大小:5
- 桶数量(r):60
- 每个桶的哈希数量(b):13
理论上,这种配置下两个实现应该产生相似的去重效果,但实际结果差异显著。
技术实现对比
Datatrove实现特点
-
采用四阶段处理流程:
- 计算Minhash签名
- 按桶匹配签名
- 创建重复簇
- 过滤重复文档
-
使用Union Set算法进行簇合并,该算法简单可靠且经过充分测试
-
文档处理包含额外元数据字段,如文件路径等
Spark实现特点
-
基于GraphFrame进行文档相似性分析
-
使用不同的ngram生成逻辑(特别是min_length参数处理)
-
输出格式更简洁,不含额外元数据
差异原因探究
-
文档计数方式差异:文件大小比较可能不准确,因Datatrove输出包含额外元数据
-
ngram生成逻辑:Spark实现中的min_length参数可能导致ngram生成方式不同
-
GraphFrame潜在问题:测试发现Spark无法从Datatrove的去重结果中找到更多重复,暗示GraphFrame实现可能存在隐藏问题
-
保留文档选择:不同实现在簇中选择保留哪个文档的机制不同,但不应导致如此大的差异
验证建议
-
使用文档计数而非文件大小比较去重率
-
对两种实现的去重结果互相验证:
- 检查Spark是否能从Datatrove结果中找到更多重复
- 检查Datatrove是否能从Spark结果中找到更多重复
-
统一ngram生成逻辑进行对比测试
结论
经过分析,Datatrove的Minhash实现是正确的,差异更可能源于Spark实现的潜在问题或比较方法的不一致。对于关键任务的数据去重工作,建议:
-
优先使用经过充分验证的实现如Datatrove
-
采用文档计数等更精确的比较方法
-
必要时进行交叉验证以确保去重质量
数据去重是数据预处理中的关键步骤,理解不同实现的细微差异对于确保数据质量至关重要。通过本文的分析,开发者可以更明智地选择和使用合适的去重工具。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00