Datatrove项目中Minhash去重实现差异分析
背景介绍
在数据预处理领域,去重是一个关键步骤。Datatrove作为Hugging Face生态系统中的一个数据处理工具,提供了基于Minhash算法的去重功能。本文探讨了Datatrove与其他实现(如Spark版本)在去重效果上的差异问题。
问题现象
用户在使用Datatrove对StackMathQA数据集进行Minhash去重时发现,与基于Spark的实现相比,Datatrove的去重率明显较低。具体表现为:
- Spark实现去除了88%的原始内容
- Datatrove仅去除了60%的内容
参数配置分析
两种实现使用了相同的核心参数配置:
- n-gram大小:5
- 桶数量(r):60
- 每个桶的哈希数量(b):13
理论上,这种配置下两个实现应该产生相似的去重效果,但实际结果差异显著。
技术实现对比
Datatrove实现特点
-
采用四阶段处理流程:
- 计算Minhash签名
- 按桶匹配签名
- 创建重复簇
- 过滤重复文档
-
使用Union Set算法进行簇合并,该算法简单可靠且经过充分测试
-
文档处理包含额外元数据字段,如文件路径等
Spark实现特点
-
基于GraphFrame进行文档相似性分析
-
使用不同的ngram生成逻辑(特别是min_length参数处理)
-
输出格式更简洁,不含额外元数据
差异原因探究
-
文档计数方式差异:文件大小比较可能不准确,因Datatrove输出包含额外元数据
-
ngram生成逻辑:Spark实现中的min_length参数可能导致ngram生成方式不同
-
GraphFrame潜在问题:测试发现Spark无法从Datatrove的去重结果中找到更多重复,暗示GraphFrame实现可能存在隐藏问题
-
保留文档选择:不同实现在簇中选择保留哪个文档的机制不同,但不应导致如此大的差异
验证建议
-
使用文档计数而非文件大小比较去重率
-
对两种实现的去重结果互相验证:
- 检查Spark是否能从Datatrove结果中找到更多重复
- 检查Datatrove是否能从Spark结果中找到更多重复
-
统一ngram生成逻辑进行对比测试
结论
经过分析,Datatrove的Minhash实现是正确的,差异更可能源于Spark实现的潜在问题或比较方法的不一致。对于关键任务的数据去重工作,建议:
-
优先使用经过充分验证的实现如Datatrove
-
采用文档计数等更精确的比较方法
-
必要时进行交叉验证以确保去重质量
数据去重是数据预处理中的关键步骤,理解不同实现的细微差异对于确保数据质量至关重要。通过本文的分析,开发者可以更明智地选择和使用合适的去重工具。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00