探索智能推荐的新境界:《统一知识图谱学习与推荐》开源项目
在今天的信息爆炸时代,个性化推荐已经成为连接用户与海量信息的关键桥梁。然而,如何更深入地理解用户的偏好并提供精准的推荐呢?《统一知识图谱学习与推荐》是一个创新性的开源项目,它将知识图谱学习和推荐系统结合起来,以期实现这一目标。
项目简介
这个项目源于2019年WWW会议的一篇论文,提出了一种名为TUP(Temporal User Preferences)的模型,该模型可以联合训练物品推荐任务和知识图谱表示学习任务。通过这种联合训练,该项目旨在更好地理解用户的动态偏好,从而提供更为精准的个性化推荐服务。
项目技术分析
项目基于Python 3.6和Pytorch 0.3.x框架,实现了包括BPRMF、FM、CFKG、CKE、CoFM、TransE、TransH、TransR以及TUP和KTUP在内的多种模型。TUP模型主要用于捕捉用户的瞬时偏好,而KTUP(Kernelized Temporal Unit Preference)模型则是对TUP的扩展,引入了共享和非共享嵌入机制,以强化跨领域的知识融合。
运行代码只需简单调用run_item_recommendation.py
、run_knowledge_representation.py
或run_knowledgable_recommendation.py
脚本,并设置相应的数据集、模型类型等参数即可。
应用场景
本项目适用于各种推荐系统环境,尤其是那些需要考虑用户兴趣演变和知识关联的场景,如电商平台的商品推荐、社交媒体的内容推荐、音乐或电影推荐等。此外,对于知识图谱构建和维护的场合,项目中的知识表示学习模型也有广泛应用价值。
项目特点
- 集成性:模型将推荐和知识图谱学习两大任务结合,使推荐更具深度和智慧。
- 灵活性:支持多种推荐算法和知识表示学习模型,便于比较和优化。
- 可视化:通过visdom工具,可以实时查看训练和评估曲线,方便监控和调试模型。
- 可扩展性:代码结构清晰,易于添加新模型和数据集,鼓励开发者进行二次开发和创新研究。
如果你正寻找一种能够更深刻理解用户偏好的推荐系统解决方案,或者对知识图谱和推荐系统的结合充满热情,那么《统一知识图谱学习与推荐》项目绝对值得你一试。现在就开始,让我们一起迈向智能推荐的新高度吧!
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09