探索智能推荐的新境界:《统一知识图谱学习与推荐》开源项目
在今天的信息爆炸时代,个性化推荐已经成为连接用户与海量信息的关键桥梁。然而,如何更深入地理解用户的偏好并提供精准的推荐呢?《统一知识图谱学习与推荐》是一个创新性的开源项目,它将知识图谱学习和推荐系统结合起来,以期实现这一目标。
项目简介
这个项目源于2019年WWW会议的一篇论文,提出了一种名为TUP(Temporal User Preferences)的模型,该模型可以联合训练物品推荐任务和知识图谱表示学习任务。通过这种联合训练,该项目旨在更好地理解用户的动态偏好,从而提供更为精准的个性化推荐服务。
项目技术分析
项目基于Python 3.6和Pytorch 0.3.x框架,实现了包括BPRMF、FM、CFKG、CKE、CoFM、TransE、TransH、TransR以及TUP和KTUP在内的多种模型。TUP模型主要用于捕捉用户的瞬时偏好,而KTUP(Kernelized Temporal Unit Preference)模型则是对TUP的扩展,引入了共享和非共享嵌入机制,以强化跨领域的知识融合。
运行代码只需简单调用run_item_recommendation.py、run_knowledge_representation.py或run_knowledgable_recommendation.py脚本,并设置相应的数据集、模型类型等参数即可。
应用场景
本项目适用于各种推荐系统环境,尤其是那些需要考虑用户兴趣演变和知识关联的场景,如电商平台的商品推荐、社交媒体的内容推荐、音乐或电影推荐等。此外,对于知识图谱构建和维护的场合,项目中的知识表示学习模型也有广泛应用价值。
项目特点
- 集成性:模型将推荐和知识图谱学习两大任务结合,使推荐更具深度和智慧。
- 灵活性:支持多种推荐算法和知识表示学习模型,便于比较和优化。
- 可视化:通过visdom工具,可以实时查看训练和评估曲线,方便监控和调试模型。
- 可扩展性:代码结构清晰,易于添加新模型和数据集,鼓励开发者进行二次开发和创新研究。
如果你正寻找一种能够更深刻理解用户偏好的推荐系统解决方案,或者对知识图谱和推荐系统的结合充满热情,那么《统一知识图谱学习与推荐》项目绝对值得你一试。现在就开始,让我们一起迈向智能推荐的新高度吧!
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00