首页
/ 探索智能推荐的新境界:《统一知识图谱学习与推荐》开源项目

探索智能推荐的新境界:《统一知识图谱学习与推荐》开源项目

2024-05-26 07:36:08作者:董灵辛Dennis

在今天的信息爆炸时代,个性化推荐已经成为连接用户与海量信息的关键桥梁。然而,如何更深入地理解用户的偏好并提供精准的推荐呢?《统一知识图谱学习与推荐》是一个创新性的开源项目,它将知识图谱学习和推荐系统结合起来,以期实现这一目标。

项目简介

这个项目源于2019年WWW会议的一篇论文,提出了一种名为TUP(Temporal User Preferences)的模型,该模型可以联合训练物品推荐任务和知识图谱表示学习任务。通过这种联合训练,该项目旨在更好地理解用户的动态偏好,从而提供更为精准的个性化推荐服务。

项目技术分析

项目基于Python 3.6和Pytorch 0.3.x框架,实现了包括BPRMF、FM、CFKG、CKE、CoFM、TransE、TransH、TransR以及TUP和KTUP在内的多种模型。TUP模型主要用于捕捉用户的瞬时偏好,而KTUP(Kernelized Temporal Unit Preference)模型则是对TUP的扩展,引入了共享和非共享嵌入机制,以强化跨领域的知识融合。

运行代码只需简单调用run_item_recommendation.pyrun_knowledge_representation.pyrun_knowledgable_recommendation.py脚本,并设置相应的数据集、模型类型等参数即可。

应用场景

本项目适用于各种推荐系统环境,尤其是那些需要考虑用户兴趣演变和知识关联的场景,如电商平台的商品推荐、社交媒体的内容推荐、音乐或电影推荐等。此外,对于知识图谱构建和维护的场合,项目中的知识表示学习模型也有广泛应用价值。

项目特点

  1. 集成性:模型将推荐和知识图谱学习两大任务结合,使推荐更具深度和智慧。
  2. 灵活性:支持多种推荐算法和知识表示学习模型,便于比较和优化。
  3. 可视化:通过visdom工具,可以实时查看训练和评估曲线,方便监控和调试模型。
  4. 可扩展性:代码结构清晰,易于添加新模型和数据集,鼓励开发者进行二次开发和创新研究。

如果你正寻找一种能够更深刻理解用户偏好的推荐系统解决方案,或者对知识图谱和推荐系统的结合充满热情,那么《统一知识图谱学习与推荐》项目绝对值得你一试。现在就开始,让我们一起迈向智能推荐的新高度吧!

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
824
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5