探索智能推荐的新境界:《统一知识图谱学习与推荐》开源项目
在今天的信息爆炸时代,个性化推荐已经成为连接用户与海量信息的关键桥梁。然而,如何更深入地理解用户的偏好并提供精准的推荐呢?《统一知识图谱学习与推荐》是一个创新性的开源项目,它将知识图谱学习和推荐系统结合起来,以期实现这一目标。
项目简介
这个项目源于2019年WWW会议的一篇论文,提出了一种名为TUP(Temporal User Preferences)的模型,该模型可以联合训练物品推荐任务和知识图谱表示学习任务。通过这种联合训练,该项目旨在更好地理解用户的动态偏好,从而提供更为精准的个性化推荐服务。
项目技术分析
项目基于Python 3.6和Pytorch 0.3.x框架,实现了包括BPRMF、FM、CFKG、CKE、CoFM、TransE、TransH、TransR以及TUP和KTUP在内的多种模型。TUP模型主要用于捕捉用户的瞬时偏好,而KTUP(Kernelized Temporal Unit Preference)模型则是对TUP的扩展,引入了共享和非共享嵌入机制,以强化跨领域的知识融合。
运行代码只需简单调用run_item_recommendation.py、run_knowledge_representation.py或run_knowledgable_recommendation.py脚本,并设置相应的数据集、模型类型等参数即可。
应用场景
本项目适用于各种推荐系统环境,尤其是那些需要考虑用户兴趣演变和知识关联的场景,如电商平台的商品推荐、社交媒体的内容推荐、音乐或电影推荐等。此外,对于知识图谱构建和维护的场合,项目中的知识表示学习模型也有广泛应用价值。
项目特点
- 集成性:模型将推荐和知识图谱学习两大任务结合,使推荐更具深度和智慧。
- 灵活性:支持多种推荐算法和知识表示学习模型,便于比较和优化。
- 可视化:通过visdom工具,可以实时查看训练和评估曲线,方便监控和调试模型。
- 可扩展性:代码结构清晰,易于添加新模型和数据集,鼓励开发者进行二次开发和创新研究。
如果你正寻找一种能够更深刻理解用户偏好的推荐系统解决方案,或者对知识图谱和推荐系统的结合充满热情,那么《统一知识图谱学习与推荐》项目绝对值得你一试。现在就开始,让我们一起迈向智能推荐的新高度吧!
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00