Nerfbusters 项目使用教程
2024-09-18 11:01:50作者:彭桢灵Jeremy
1. 项目介绍
Nerfbusters 是一个开源项目,旨在从随意捕捉的神经辐射场(NeRFs)中移除幽灵般的伪影。该项目通过使用3D扩散先验和一种新颖的基于密度的分数蒸馏采样损失来优化NeRF,从而提高场景几何质量并移除浮动伪影。Nerfbusters 项目由Frederik Warburg、Ethan Weber、Matthew Tancik、Aleksander Hołyński 和 Angjoo Kanazawa 开发,并在ICCV 2023上发表。
2. 项目快速启动
2.1 环境设置
首先,创建并激活一个conda环境:
conda create --name nerfbusters -y python=3.8
conda activate nerfbusters
2.2 安装依赖
安装Nerfstudio和相关依赖:
pip install --upgrade pip
pip install torch==1.13.1 torchvision functorch --extra-index-url https://download.pytorch.org/whl/cu117
pip install git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch
2.3 安装Nerfbusters
克隆并安装Nerfbusters项目:
git clone https://github.com/ethanweber/nerfbusters
cd nerfbusters
pip install -e .
2.4 下载ShapeNet数据集
下载并准备ShapeNet数据集:
mkdir bins
cd bins
wget -O binvox https://www.patrickmin.com/binvox/linux64/binvox?rnd=16811490753710
chmod +x binvox
2.5 训练3D扩散模型
训练Nerfbusters的3D扩散模型:
python nerfbusters/run.py --config config/shapenet.yaml --name shapenet-experiment
3. 应用案例和最佳实践
3.1 移除NeRF中的伪影
使用Nerfbusters移除NeRF中的伪影,首先训练一个Nerfacto模型:
ns-train nerfacto --data path/to/data
然后使用Nerfbusters进行后处理:
ns-train nerfbusters --data path/to/data --pipeline.nerf-checkpoint-path $NERF_CHECKPOINT_PATH nerfstudio-data --eval-mode train-split-fraction
3.2 渲染路径
渲染处理后的路径:
ns-render --load-config path/to/config.yml --traj filename --camera-path-filename path/to/camera-path.json --output-path renders/my-render.mp4
4. 典型生态项目
4.1 Nerfstudio
Nerfstudio 是一个用于NeRF训练和可视化的开源项目,Nerfbusters 依赖于Nerfstudio 进行部分功能实现。
4.2 Tiny-cuda-nn
Tiny-cuda-nn 是一个轻量级的CUDA神经网络库,用于加速Nerfbusters 中的3D扩散模型训练。
4.3 ShapeNet
ShapeNet 是一个大规模的3D模型数据集,Nerfbusters 使用ShapeNet 数据集来训练其3D扩散模型。
通过以上步骤,您可以快速启动并使用Nerfbusters 项目,移除NeRF中的伪影,并进行高质量的渲染。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0287Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
161
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
198
279

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
535
62

Ascend Extension for PyTorch
Python
51
81

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
950
556

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1 K
397

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
385
19

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191