DEXTR-PyTorch 的安装和配置教程
2025-05-27 16:11:45作者:宗隆裙
项目基础介绍
DEXTR-PyTorch 是一个基于 PyTorch 的开源项目,它实现了 Deep Extreme Cut (DEXTR) 算法,该算法通过使用图像中的极值点(如最左、最右、最上、最下像素)作为输入,实现对图像和视频中对象的精确分割。项目主要使用 Python 编程语言。
项目使用的关键技术和框架
本项目使用了以下关键技术:
- 卷积神经网络 (CNN):用于处理图像输入,并学习将极值点信息转化为对象分割。
- PyTorch:一个开源的机器学习库,用于实现和训练深度学习模型。
项目安装和配置的准备工作
在开始安装 DEXTR-PyTorch 前,您需要准备以下环境:
- 安装 Miniconda 或 Anaconda
- Python 3.6 版本
- Git 版本控制系统
确保您的系统满足以上条件后,可以开始以下安装步骤。
安装步骤
-
克隆仓库 打开命令行,运行以下命令克隆 DEXTR-PyTorch 项目仓库:
git clone https://github.com/scaelles/DEXTR-PyTorch.git cd DEXTR-PyTorch -
安装依赖 在项目目录下,安装所需的依赖库:
conda install pytorch torchvision -c pytorch conda install matplotlib opencv pillow scikit-learn scikit-image -
下载模型 进入
models目录,并运行脚本下载预训练模型:cd models/ chmod +x download_dextr_model.sh ./download_dextr_model.sh cd .. -
配置路径 在
mypath.py文件中,设置 PASCAL/SBD 数据集的路径。 -
运行演示 运行以下命令尝试 DEXTR 的演示版本:
python demo.py -
训练和评估 若要在 Pascal 数据集上训练和评估 DEXTR,需要先安装 tensorboard:
pip install tensorboard tensorboardx然后下载预训练的 PSPNet 模型:
cd models/ chmod +x download_pretrained_psp_model.sh ./download_pretrained_psp_model.sh cd ..接下来,运行训练脚本:
python train_pascal.py
按照以上步骤操作,您应该能够成功安装和配置 DEXTR-PyTorch 项目。如果在安装过程中遇到任何问题,请确保检查每个步骤是否正确执行,并查看项目的官方文档以获取更多信息。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1