MLJAR-Supervised中神经网络多分类预测概率归一化问题分析
2025-06-26 09:41:32作者:何将鹤
问题背景
在MLJAR-Supervised机器学习库的测试过程中,发现了一个关于神经网络多分类预测结果的问题。具体表现为在使用MLPAlgorithm进行多分类任务时,模型输出的预测概率值没有进行归一化处理,导致各分类概率之和不为1,从而触发了scikit-learn库中的用户警告。
问题现象
测试用例MultiClassNeuralNetworkAlgorithmTest.test_fit_predict在执行过程中,当计算logloss指标时,scikit-learn的log_loss函数检测到预测概率值(y_pred)的各行之和不为1,因此发出了警告信息:"The y_pred values do not sum to one. Make sure to pass probabilities."
从测试输出可以看到,预测概率矩阵如:
array([[0.51940924, 0.31767577, 0.33492753],
[0.4552488 , 0.32350045, 0.32806817],
...
[0.28606585, 0.3815756 , 0.3253422 ]], dtype=float32)
其中每行的三个概率值相加明显大于1,不符合概率分布的基本要求。
技术原理
在多分类机器学习任务中,神经网络最后一层通常会使用softmax激活函数,其数学表达式为:
σ(z⃗ )ᵢ = e^{zᵢ} / ∑ⱼ e^{zⱼ}
softmax函数能够将神经网络的原始输出转换为概率分布,确保:
- 每个类别的预测值在0到1之间
- 所有类别的预测值之和为1
如果未正确应用softmax函数,或者输出层使用了不合适的激活函数,就会导致预测值不符合概率分布的要求。
问题影响
- 指标计算不准确:logloss等基于概率的评估指标依赖于有效的概率分布,非归一化的预测值会导致计算结果失真
- 模型比较困难:不同模型的性能比较会受到影响
- 后续处理问题:如果其他组件假设输入是标准概率分布,可能会产生意外行为
解决方案
该问题已被项目维护者修复,主要措施可能包括:
- 确保神经网络输出层正确使用softmax激活函数
- 在预测方法中对输出结果进行后处理,强制归一化
- 添加输入验证,确保传递给评估函数的是有效的概率分布
最佳实践建议
- 在多分类任务中,始终验证模型输出的概率分布特性
- 在自定义神经网络架构时,特别注意输出层的设计
- 对于重要的评估指标,可以添加预处理步骤检查输入数据的有效性
- 在测试用例中加入对模型输出分布的验证
这个问题虽然表现为一个简单的警告信息,但反映了模型实现中一个重要的正确性问题。通过及时修复,确保了MLJAR-Supervised库在多分类任务中的可靠性和准确性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
541
3.77 K
Ascend Extension for PyTorch
Python
351
419
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
615
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
186
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
194
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
759