MLJAR-Supervised中自定义评估指标NMAE的实现要点
2025-06-26 15:40:54作者:范靓好Udolf
在机器学习项目中使用自定义评估指标是常见需求,MLJAR-Supervised作为一个自动化机器学习工具,支持用户自定义评估函数。本文将以NMAE(Normalized Mean Absolute Error)指标为例,详细介绍在MLJAR-Supervised中实现自定义评估指标的关键技术要点。
什么是NMAE指标
NMAE(归一化平均绝对误差)是MAE指标的归一化版本,计算公式为:
NMAE = MAE / mean(|true_values|)
相比原始MAE,NMAE通过除以真实值的绝对均值,使得误差值在不同量纲的数据集间具有可比性。
基础实现的问题
最直观的NMAE实现可能如下:
def NMAE(true, pred, sample_weight=None):
mae = np.mean(np.abs(true - pred))
score = mae / np.mean(np.abs(true))
return score
然而在MLJAR-Supervised的集成学习(Ensemble)阶段,这种实现会报错:"unsupported operand type(s) for +: 'float' and 'NoneType'"
问题原因分析
该错误源于MLJAR-Supervised的集成学习阶段对预测结果的特殊处理方式:
- 集成学习阶段传入的true和pred参数可能是pandas DataFrame格式
- 预测结果pred可能是二维数组(pred.shape = [n_samples, 1]),而非一维数组
健壮的实现方案
为确保自定义指标在所有学习阶段(包括集成学习)都能正常工作,需要添加类型检查和维度处理:
def NMAE(true, pred, sample_weight=None):
# 类型转换处理
if isinstance(true, pd.DataFrame):
true = np.array(true)
if isinstance(pred, pd.DataFrame):
pred = np.array(pred)
# 维度处理
if len(pred.shape) == 2 and pred.shape[1] == 1:
pred = pred.ravel()
# 核心计算逻辑
mae = np.mean(np.abs(true - pred))
score = mae / np.mean(np.abs(true))
return score
关键实现要点
- 类型检查与转换:使用isinstance检查输入是否为DataFrame,必要时转换为numpy数组
- 维度处理:将二维预测结果(pred.shape = [n_samples, 1])转换为一维数组
- 核心计算:保持原始NMAE计算逻辑不变
- 权重参数:虽然本例未使用sample_weight,但保留参数接口以保持兼容性
总结
在MLJAR-Supervised中实现自定义评估指标时,不能仅考虑基础计算逻辑,还需要考虑框架在不同学习阶段可能的数据格式变化。特别是集成学习阶段,预测结果的格式可能与基础学习器阶段不同。通过添加类型检查和维度处理,可以确保自定义指标在所有学习阶段都能稳定工作。
这种实现方式不仅适用于NMAE指标,也可作为其他自定义评估指标的参考模板,帮助开发者构建更健壮的自动化机器学习流程。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
25