MLJAR-Supervised中自定义评估指标NMAE的实现要点
2025-06-26 12:46:30作者:范靓好Udolf
在机器学习项目中使用自定义评估指标是常见需求,MLJAR-Supervised作为一个自动化机器学习工具,支持用户自定义评估函数。本文将以NMAE(Normalized Mean Absolute Error)指标为例,详细介绍在MLJAR-Supervised中实现自定义评估指标的关键技术要点。
什么是NMAE指标
NMAE(归一化平均绝对误差)是MAE指标的归一化版本,计算公式为:
NMAE = MAE / mean(|true_values|)
相比原始MAE,NMAE通过除以真实值的绝对均值,使得误差值在不同量纲的数据集间具有可比性。
基础实现的问题
最直观的NMAE实现可能如下:
def NMAE(true, pred, sample_weight=None):
mae = np.mean(np.abs(true - pred))
score = mae / np.mean(np.abs(true))
return score
然而在MLJAR-Supervised的集成学习(Ensemble)阶段,这种实现会报错:"unsupported operand type(s) for +: 'float' and 'NoneType'"
问题原因分析
该错误源于MLJAR-Supervised的集成学习阶段对预测结果的特殊处理方式:
- 集成学习阶段传入的true和pred参数可能是pandas DataFrame格式
- 预测结果pred可能是二维数组(pred.shape = [n_samples, 1]),而非一维数组
健壮的实现方案
为确保自定义指标在所有学习阶段(包括集成学习)都能正常工作,需要添加类型检查和维度处理:
def NMAE(true, pred, sample_weight=None):
# 类型转换处理
if isinstance(true, pd.DataFrame):
true = np.array(true)
if isinstance(pred, pd.DataFrame):
pred = np.array(pred)
# 维度处理
if len(pred.shape) == 2 and pred.shape[1] == 1:
pred = pred.ravel()
# 核心计算逻辑
mae = np.mean(np.abs(true - pred))
score = mae / np.mean(np.abs(true))
return score
关键实现要点
- 类型检查与转换:使用isinstance检查输入是否为DataFrame,必要时转换为numpy数组
- 维度处理:将二维预测结果(pred.shape = [n_samples, 1])转换为一维数组
- 核心计算:保持原始NMAE计算逻辑不变
- 权重参数:虽然本例未使用sample_weight,但保留参数接口以保持兼容性
总结
在MLJAR-Supervised中实现自定义评估指标时,不能仅考虑基础计算逻辑,还需要考虑框架在不同学习阶段可能的数据格式变化。特别是集成学习阶段,预测结果的格式可能与基础学习器阶段不同。通过添加类型检查和维度处理,可以确保自定义指标在所有学习阶段都能稳定工作。
这种实现方式不仅适用于NMAE指标,也可作为其他自定义评估指标的参考模板,帮助开发者构建更健壮的自动化机器学习流程。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
404
3.14 K
Ascend Extension for PyTorch
Python
224
250
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
657
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220