Druid项目中MV_CONTAINS函数NullPointerException问题分析与修复
在Druid 30.0.0版本升级过程中,用户反馈了一个关于MV_CONTAINS函数的严重问题。当该函数与JSON_QUERY_ARRAY组合使用时,系统会抛出NullPointerException异常,而这一功能在之前的29.0.0版本中运行正常。
问题背景
MV_CONTAINS是Druid中用于检查数组是否包含特定元素的函数。在典型使用场景中,开发人员会将其与JSON_QUERY_ARRAY结合使用,从JSON文档中提取数组并进行包含性检查。例如,查询用户代理类型是否为"Browser"的常见操作。
问题根源分析
经过深入分析,发现问题出在Druid内部对ARRAY_CONTAINS表达式的优化处理上。当该优化路径遇到JSON_QUERY_ARRAY返回的复杂类型(COMPLEX)时,系统会尝试将右侧参数强制转换为数组元素类型。但由于JSON_QUERY_ARRAY无法预先确定元素类型,导致类型转换失败并引发空指针异常。
解决方案
修复方案的核心在于修改优化路径的条件判断。具体来说,在Function.java文件中,我们增加了对原始类型和原始类型数组的显式检查。只有当左侧表达式类型为原始类型或原始类型数组时,才会进入优化路径,否则保持原有处理逻辑。
这一修改确保了当遇到复杂类型时,系统会回退到逐行检查的类型处理机制,而不是尝试进行不安全的类型转换。同时,类似的修复也需要应用于array_overlap函数,因为它共享相同的优化路径。
最佳实践建议
虽然修复了该问题,但从性能角度考虑,我们建议开发人员优先使用ARRAY_CONTAINS函数而非MV_CONTAINS,特别是在处理JSON数组时。MV_系列函数主要针对Druid早期的多值字符串列设计,而ARRAY_系列函数更适合处理现代Druid版本中的真实数组类型。
此外,对于JSON数据处理,使用JSON_VALUE表达式通常能获得更好的性能优化,因为它可以直接利用Druid的嵌套字段列存储结构,而不是像JSON_QUERY/JSON_QUERY_ARRAY那样处理原始JSON数据。
版本影响
该问题影响从30.0.0开始的Druid版本,包括最新的31.0.0版本。修复后,用户将能够继续使用原有的查询模式,同时我们也鼓励开发人员采用更优化的查询写法以获得更好的性能。
通过这次问题的分析和修复,不仅解决了具体的功能异常,也为Druid处理复杂类型时的表达式优化提供了更健壮的机制,有助于提升整个系统的稳定性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00