RuoYi-Vue-Pro项目中一对多分页查询的实现方案
2025-05-05 17:26:50作者:殷蕙予
一对多分页查询的常见场景
在业务系统开发中,一对多关系的数据分页查询是非常常见的需求。以学生成绩管理系统为例,一个学生可能对应多条成绩记录,我们需要在分页展示学生列表的同时,展示每个学生的成绩信息。
传统实现方式的局限性
传统的一对多分页查询通常采用以下步骤:
- 先分页查询主表(学生表)数据
- 获取主表ID集合
- 根据ID集合查询关联表(成绩表)数据
- 手动组装数据
这种方式虽然可行,但存在几个问题:
- 需要编写大量重复代码
- 性能优化空间有限
- 代码可维护性较差
RuoYi-Vue-Pro项目的解决方案
RuoYi-Vue-Pro项目提供了一套优雅的一对多分页查询实现方案,主要基于MyBatis的联表查询能力。项目中的ERP模块提供了selectJoinPage相关的示例,展示了如何高效实现这类查询。
核心实现原理
- MyBatis联表查询:通过MyBatis的association和collection标签实现对象关联映射
- 分页拦截器:利用PageHelper插件实现物理分页
- DTO对象封装:使用专门的数据传输对象承载查询结果
具体实现步骤
- Mapper接口定义:在Mapper接口中定义联表查询方法,使用@Select注解或XML映射
- Service层调用:在Service层调用Mapper方法,并传入Page参数
- 结果处理:将查询结果转换为VO对象返回给前端
性能优化建议
- 合理使用索引:确保关联字段上有适当的索引
- 延迟加载:对于大数据量场景,考虑使用延迟加载
- 查询字段控制:只查询必要的字段,避免SELECT *
实际应用示例
以学生成绩查询为例,代码结构大致如下:
// Mapper接口
@Select("SELECT s.* FROM student s LEFT JOIN score sc ON s.id = sc.student_id")
Page<StudentVO> selectStudentWithScore(Page<StudentVO> page, @Param("query") StudentQuery query);
// Service实现
public PageResult<StudentVO> getStudentPage(StudentQuery query) {
Page<StudentVO> page = PageHelper.startPage(query);
List<StudentVO> list = studentMapper.selectStudentWithScore(page, query);
return new PageResult<>(list, page.getTotal());
}
总结
RuoYi-Vue-Pro项目通过整合MyBatis的强大功能和PageHelper插件,提供了一套完整的一对多分页查询解决方案。开发者可以借鉴项目中的实现方式,快速构建高效、可维护的分页查询功能。在实际应用中,还需要根据具体业务场景进行适当的调整和优化。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217