Apache Fury项目中的JPMS模块化支持实践
引言
随着Java平台模块系统(JPMS)的普及,越来越多的Java项目开始考虑模块化支持。Apache Fury作为一个高性能的序列化框架,近期也面临了如何优雅支持JPMS的需求。本文将深入探讨Fury项目在模块化支持方面的技术决策和实践经验。
JPMS模块化的重要性
Java平台模块系统(JPMS)自Java 9引入以来,为Java应用程序带来了更好的封装性、可靠性和性能。模块化能够明确声明模块间的依赖关系,避免隐式依赖带来的问题,同时为构建更精简的运行时环境提供了可能。
对于像Apache Fury这样的基础库来说,支持JPMS不仅能够消除构建时的警告信息,更重要的是为使用Fury的模块化应用程序提供更好的兼容性和可维护性。
Fury的模块化方案选择
在技术实现上,Fury项目面临两个主要选择:
-
自动模块方案:通过在MANIFEST.MF中添加Automatic-Module-Name条目,这是最轻量级的解决方案,不会影响现有构建流程,且完全向后兼容。
-
完整模块化方案:提供完整的module-info.java描述符,这需要更复杂的构建配置,但能提供完全的模块化支持。
考虑到Fury目前仍需要支持Java 8用户,且部分依赖库(如Guava)尚未完全支持JPMS,项目团队决定首先采用自动模块方案作为过渡。
模块命名规范
在确定模块名称时,Fury采用了简洁直观的命名方式:
- 核心模块:org.apache.fury.core
- 格式模块:org.apache.fury.format
这种命名方式既保持了与Maven坐标的对应关系,又符合Java模块命名的惯例,便于开发者理解和记忆。
完整模块化的技术挑战
虽然自动模块方案解决了当前的兼容性问题,但未来要实现完整模块化支持仍面临几个技术挑战:
-
多版本构建:需要支持同时构建Java 8和Java 9+版本,可以采用以下两种方式:
- 双编译阶段:先编译module-info.java到Java 9,再编译其余代码到Java 8
- 多版本JAR:将module-info.java放在META-INF/versions/9目录下
-
依赖兼容性:部分关键依赖(如Guava)尚未提供完整的模块支持,这限制了Fury完全模块化的进程。
-
测试策略调整:完整模块化后,某些测试可能需要移到集成测试阶段执行,以确保模块声明(如uses和provides)的正确性。
实践经验分享
从技术实现角度看,双编译阶段方案具有以下优势:
- IDE支持良好,开发体验流畅
- module-info.java可以与业务代码放在一起
- 构建配置相对简单
而多版本JAR方案虽然更符合标准,但会带来IDE支持不足和测试流程复杂化的问题。
未来展望
随着Java生态系统的演进,完整模块化支持将成为Apache Fury项目的必然选择。项目团队需要密切关注关键依赖的模块化进展,并适时推进完整模块化工作。同时,保持对Java 8的支持仍将是项目的重要考量因素。
对于其他面临类似问题的Java项目,Fury的经验表明:从自动模块开始,逐步向完整模块化过渡是一个务实可行的技术路线。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









