Apache Fury项目中的JPMS模块化支持实践
引言
随着Java平台模块系统(JPMS)的普及,越来越多的Java项目开始考虑模块化支持。Apache Fury作为一个高性能的序列化框架,近期也面临了如何优雅支持JPMS的需求。本文将深入探讨Fury项目在模块化支持方面的技术决策和实践经验。
JPMS模块化的重要性
Java平台模块系统(JPMS)自Java 9引入以来,为Java应用程序带来了更好的封装性、可靠性和性能。模块化能够明确声明模块间的依赖关系,避免隐式依赖带来的问题,同时为构建更精简的运行时环境提供了可能。
对于像Apache Fury这样的基础库来说,支持JPMS不仅能够消除构建时的警告信息,更重要的是为使用Fury的模块化应用程序提供更好的兼容性和可维护性。
Fury的模块化方案选择
在技术实现上,Fury项目面临两个主要选择:
-
自动模块方案:通过在MANIFEST.MF中添加Automatic-Module-Name条目,这是最轻量级的解决方案,不会影响现有构建流程,且完全向后兼容。
-
完整模块化方案:提供完整的module-info.java描述符,这需要更复杂的构建配置,但能提供完全的模块化支持。
考虑到Fury目前仍需要支持Java 8用户,且部分依赖库(如Guava)尚未完全支持JPMS,项目团队决定首先采用自动模块方案作为过渡。
模块命名规范
在确定模块名称时,Fury采用了简洁直观的命名方式:
- 核心模块:org.apache.fury.core
- 格式模块:org.apache.fury.format
这种命名方式既保持了与Maven坐标的对应关系,又符合Java模块命名的惯例,便于开发者理解和记忆。
完整模块化的技术挑战
虽然自动模块方案解决了当前的兼容性问题,但未来要实现完整模块化支持仍面临几个技术挑战:
-
多版本构建:需要支持同时构建Java 8和Java 9+版本,可以采用以下两种方式:
- 双编译阶段:先编译module-info.java到Java 9,再编译其余代码到Java 8
- 多版本JAR:将module-info.java放在META-INF/versions/9目录下
-
依赖兼容性:部分关键依赖(如Guava)尚未提供完整的模块支持,这限制了Fury完全模块化的进程。
-
测试策略调整:完整模块化后,某些测试可能需要移到集成测试阶段执行,以确保模块声明(如uses和provides)的正确性。
实践经验分享
从技术实现角度看,双编译阶段方案具有以下优势:
- IDE支持良好,开发体验流畅
- module-info.java可以与业务代码放在一起
- 构建配置相对简单
而多版本JAR方案虽然更符合标准,但会带来IDE支持不足和测试流程复杂化的问题。
未来展望
随着Java生态系统的演进,完整模块化支持将成为Apache Fury项目的必然选择。项目团队需要密切关注关键依赖的模块化进展,并适时推进完整模块化工作。同时,保持对Java 8的支持仍将是项目的重要考量因素。
对于其他面临类似问题的Java项目,Fury的经验表明:从自动模块开始,逐步向完整模块化过渡是一个务实可行的技术路线。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0128AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









