Fury项目实现JPMS模块化命名的技术实践
背景介绍
Apache Fury作为一款高性能的序列化框架,随着Java平台模块系统(JPMS)的普及,面临着向模块化转型的需求。在传统的Java应用中,类路径(Classpath)机制存在"JAR地狱"等问题,而JPMS通过模块化设计提供了更好的封装性和可靠性。
问题分析
当开发者将Fury集成到模块化应用时,Maven编译器会发出警告,提示检测到基于文件名的自动模块(automatic modules)。这种警告表明项目尚未完全适配JPMS规范,可能影响未来的维护和发布。
解决方案选择
针对Fury的现状,技术团队评估了两种模块化方案:
-
最小化改造方案:通过在MANIFEST.MF中添加Automatic-Module-Name条目,这是最轻量级的解决方案,不会影响现有构建流程,可通过maven-jar-plugin配置实现。
-
完整模块化方案:提供完整的module-info.java描述符,这需要构建过程支持多版本编译或生成多版本JAR(Multi-Release JAR)。虽然功能更完整,但实现复杂度高,且依赖链中的其他库(如Guava)也需要支持JPMS。
考虑到项目依赖和兼容性要求,团队决定优先采用第一种方案作为过渡,为未来完整模块化奠定基础。
模块命名规范
在确定模块名称时,团队遵循了以下原则:
- 采用反向域名命名惯例
- 保持与Maven坐标的逻辑对应
- 确保名称简洁明了
最终确定的命名模式为:
- 核心模块:org.apache.fury.core
- 格式模块:org.apache.fury.format
- 测试模块采用类似但分层的命名结构
技术实现细节
实现过程中,通过Maven插件配置自动生成模块名称:
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-jar-plugin</artifactId>
<configuration>
<archive>
<manifestEntries>
<Automatic-Module-Name>org.apache.fury.core</Automatic-Module-Name>
</manifestEntries>
</archive>
</configuration>
</plugin>
这种配置方式确保了:
- 向后兼容Java 8及更早版本
- 在Java 9+环境中提供明确的模块标识
- 不影响现有构建流程和依赖管理
未来演进方向
虽然当前采用了过渡方案,但团队已经规划了完整的JPMS支持路线图:
-
多阶段编译策略:先以Java 9编译module-info.java进行验证,再以Java 8编译其他代码,平衡兼容性和模块化验证需求。
-
依赖生态适配:等待关键依赖(如Guava)提供官方JPMS支持,或逐步替换这些依赖。
-
构建工具优化:评估使用多版本JAR的可能性,虽然会增加构建复杂度,但能提供更干净的模块边界。
实践建议
对于面临类似模块化转型的Java项目,建议:
- 从Automatic-Module-Name开始,逐步演进
- 模块命名应保持稳定,避免后续破坏性变更
- 在CI流程中加入模块化验证步骤
- 优先确保向后兼容性,特别是对仍在使用Java 8的用户
Fury项目的这一实践为其他中间件类库的模块化转型提供了有价值的参考案例,展示了如何在保持兼容性的同时向现代Java模块系统演进的技术路径。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00