Fury项目实现JPMS模块化命名的技术实践
背景介绍
Apache Fury作为一款高性能的序列化框架,随着Java平台模块系统(JPMS)的普及,面临着向模块化转型的需求。在传统的Java应用中,类路径(Classpath)机制存在"JAR地狱"等问题,而JPMS通过模块化设计提供了更好的封装性和可靠性。
问题分析
当开发者将Fury集成到模块化应用时,Maven编译器会发出警告,提示检测到基于文件名的自动模块(automatic modules)。这种警告表明项目尚未完全适配JPMS规范,可能影响未来的维护和发布。
解决方案选择
针对Fury的现状,技术团队评估了两种模块化方案:
-
最小化改造方案:通过在MANIFEST.MF中添加Automatic-Module-Name条目,这是最轻量级的解决方案,不会影响现有构建流程,可通过maven-jar-plugin配置实现。
-
完整模块化方案:提供完整的module-info.java描述符,这需要构建过程支持多版本编译或生成多版本JAR(Multi-Release JAR)。虽然功能更完整,但实现复杂度高,且依赖链中的其他库(如Guava)也需要支持JPMS。
考虑到项目依赖和兼容性要求,团队决定优先采用第一种方案作为过渡,为未来完整模块化奠定基础。
模块命名规范
在确定模块名称时,团队遵循了以下原则:
- 采用反向域名命名惯例
- 保持与Maven坐标的逻辑对应
- 确保名称简洁明了
最终确定的命名模式为:
- 核心模块:org.apache.fury.core
- 格式模块:org.apache.fury.format
- 测试模块采用类似但分层的命名结构
技术实现细节
实现过程中,通过Maven插件配置自动生成模块名称:
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-jar-plugin</artifactId>
<configuration>
<archive>
<manifestEntries>
<Automatic-Module-Name>org.apache.fury.core</Automatic-Module-Name>
</manifestEntries>
</archive>
</configuration>
</plugin>
这种配置方式确保了:
- 向后兼容Java 8及更早版本
- 在Java 9+环境中提供明确的模块标识
- 不影响现有构建流程和依赖管理
未来演进方向
虽然当前采用了过渡方案,但团队已经规划了完整的JPMS支持路线图:
-
多阶段编译策略:先以Java 9编译module-info.java进行验证,再以Java 8编译其他代码,平衡兼容性和模块化验证需求。
-
依赖生态适配:等待关键依赖(如Guava)提供官方JPMS支持,或逐步替换这些依赖。
-
构建工具优化:评估使用多版本JAR的可能性,虽然会增加构建复杂度,但能提供更干净的模块边界。
实践建议
对于面临类似模块化转型的Java项目,建议:
- 从Automatic-Module-Name开始,逐步演进
- 模块命名应保持稳定,避免后续破坏性变更
- 在CI流程中加入模块化验证步骤
- 优先确保向后兼容性,特别是对仍在使用Java 8的用户
Fury项目的这一实践为其他中间件类库的模块化转型提供了有价值的参考案例,展示了如何在保持兼容性的同时向现代Java模块系统演进的技术路径。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00