Terraform Provider Google 新增存储传输作业私有网络支持
背景介绍
在云计算环境中,数据的安全传输一直是一个重要课题。Google Cloud Platform 提供的存储传输服务(Storage Transfer Service)允许用户在不同云服务提供商之间高效地迁移数据。近期,Terraform Provider Google 项目针对存储传输作业资源(google_storage_transfer_job)进行了功能增强,增加了对AWS S3数据源的私有网络支持。
技术细节
原有功能限制
在之前的版本中,当用户需要从AWS S3向Google Cloud Storage传输数据时,数据传输是通过公共互联网进行的。这种方式虽然简单易用,但在某些对安全性要求较高的场景下存在潜在风险。
新增功能特性
最新版本的Terraform Provider Google为google_storage_transfer_job资源新增了aws_s3_data_source.managed_private_network字段支持。这个功能允许用户通过私有网络连接来传输数据,而不是通过公共互联网,从而提高了数据传输的安全性和可靠性。
实现原理
该功能的实现基于Google Cloud与AWS之间的私有网络连接能力。当启用此选项时,数据传输会通过专门建立的私有网络通道进行,避免了数据在公共网络上的暴露风险。这种连接方式通常具有更高的带宽保证和更低的延迟。
应用场景
-
合规性要求严格的企业:对于金融、医疗等行业,数据在传输过程中必须满足特定的安全合规要求。
-
大数据量传输:当需要传输TB级甚至PB级数据时,私有网络连接能提供更稳定、高效的传输通道。
-
混合云环境:在混合云架构中,企业可能已经建立了Google Cloud与AWS之间的私有连接,利用此功能可以充分利用现有网络基础设施。
配置示例
以下是一个使用新功能的Terraform配置示例:
resource "google_storage_transfer_job" "secure_transfer" {
description = "Secure S3 to GCS transfer"
transfer_spec {
aws_s3_data_source {
bucket_name = "source-bucket"
managed_private_network = true
aws_access_key {
access_key_id = var.aws_access_key
secret_access_key = var.aws_secret_key
}
}
gcs_data_sink {
bucket_name = "destination-bucket"
}
}
schedule {
schedule_start_date {
year = 2025
month = 5
day = 1
}
}
}
注意事项
-
AWS基础设施要求:使用此功能需要在AWS端配置相应的网络连接,确保私有网络通道已经建立。
-
成本考量:私有网络连接可能会产生额外的网络费用,用户应评估成本效益。
-
测试验证:由于该功能需要特定的AWS基础设施支持,测试验证过程可能较为复杂。
总结
Terraform Provider Google对存储传输作业的私有网络支持增强了跨云数据传输的安全性,为企业用户提供了更多选择。这一功能的加入使得Google Cloud的存储传输服务能够更好地满足企业级用户的安全合规需求,同时也为大规模数据迁移提供了更可靠的解决方案。
对于已经使用Google Cloud存储传输服务的用户,建议评估是否需要将现有配置升级为使用私有网络连接,以提高数据传输的安全级别。对于新用户,则可以在初始设计时就考虑采用这一更安全的传输方式。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00