TorchMetrics文档构建中的随机性错误分析与解决方案
2025-07-03 11:03:24作者:江焘钦
问题背景
在TorchMetrics项目构建文档过程中,出现了两个与绘图功能相关的随机性错误。这些错误并非每次都会出现,而是在某些特定条件下才会触发,给项目的持续集成流程带来了不稳定性。
错误类型分析
1. 分组公平性指标绘图错误
在group_fairness模块的绘图功能中,系统抛出了KeyError: 'EO_1_0'异常。这个错误表明在尝试访问字典中的键时,该键不存在。具体发生在绘图函数处理多步骤评估结果时,系统尝试访问一个预期存在但实际上缺失的指标键。
2. Dunn指数计算错误
在dunn_index模块中,文档构建时出现了张量操作相关的错误。错误发生在计算聚类中心点之间的距离时,系统尝试对空张量或形状不匹配的张量进行操作。值得注意的是,这个错误特别奇怪,因为测试使用的是确定性张量,理论上不应该出现随机性失败。
技术原因探究
-
分组公平性指标问题:根本原因在于绘图函数假设所有评估步骤都会产生相同的指标键集合,但实际运行中某些步骤可能由于数据分布原因没有生成特定子组的指标(如'EO_1_0')。
-
Dunn指数问题:虽然测试数据是确定性的,但可能在某些边界条件下(如聚类中心数量过少或数据点分布特殊)会导致距离计算出现问题。特别是当所有数据点被分配到同一个聚类时,中心点距离计算就会失效。
解决方案
分组公平性指标修复
- 修改绘图函数,使其能够处理不同评估步骤可能包含不同指标键的情况
- 添加输入验证,确保所有步骤至少包含相同的核心指标集
- 实现更健壮的字典合并逻辑,能够处理部分键缺失的情况
Dunn指数修复
- 增加对聚类数量的验证,确保至少有两个聚类中心
- 为边界情况(如所有点在一个聚类中)添加特殊处理
- 改进示例数据生成,避免产生无效的聚类配置
经验总结
这类随机性错误在指标库开发中较为常见,主要教训包括:
- 绘图函数需要对输入数据做更全面的验证
- 即使是确定性测试数据,也需要考虑各种边界条件
- 文档构建过程中的示例需要特别设计,避免依赖随机性
- 指标计算应考虑各种可能的输入情况,而不仅仅是理想场景
通过这次问题的解决,TorchMetrics的文档构建稳定性得到了提升,同时也为类似指标库的开发提供了有价值的参考经验。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C038
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0118
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
434
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
272
暂无简介
Dart
693
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869