Kubernetes Cluster Capacity 项目教程
1. 项目介绍
Kubernetes Cluster Capacity 是一个由 Kubernetes 特别兴趣小组(SIG)维护的开源项目,旨在帮助用户分析和估算 Kubernetes 集群的剩余可分配资源。通过模拟一系列调度决策,该项目能够确定在资源耗尽之前,集群可以调度多少个具有特定资源需求的 Pod 实例。这对于集群管理员来说非常有用,可以帮助他们在资源耗尽之前采取措施,确保未来的 Pod 能够顺利调度。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了以下工具:
- Go 语言环境
- Kubernetes 集群
kubectl命令行工具
2.2 下载项目
首先,克隆 cluster-capacity 项目到本地:
$ cd $GOPATH/src/sigs.k8s.io
$ git clone https://github.com/kubernetes-sigs/cluster-capacity.git
$ cd cluster-capacity
2.3 构建项目
使用以下命令构建项目:
$ make build
2.4 运行分析
构建完成后,你可以使用以下命令运行集群容量分析:
$ ./cluster-capacity --kubeconfig <path to kubeconfig> --podspec=examples/pod.yaml
2.5 查看帮助
如果你想了解更多可用选项,可以运行:
$ ./cluster-capacity --help
3. 应用案例和最佳实践
3.1 案例:估算集群剩余容量
假设你有一个运行中的 Kubernetes 集群,包含 4 个节点和 1 个主节点,每个节点有 2 个 CPU 和 4GB 内存。你希望估算集群在资源耗尽之前可以调度多少个资源需求为 150m CPU 和 100Mi 内存的 Pod。
你可以使用以下命令进行分析:
$ ./cluster-capacity --kubeconfig <path to kubeconfig> --podspec=examples/pod.yaml --verbose
输出结果将显示集群可以调度的 Pod 实例数量以及每个节点的分配情况。
3.2 最佳实践:定期监控集群容量
为了确保集群的稳定运行,建议定期运行 cluster-capacity 工具来监控集群的剩余容量。你可以将其集成到 CI/CD 管道中,或者设置为定时任务,以便在资源接近耗尽时及时采取措施。
4. 典型生态项目
4.1 Kubernetes Metrics Server
Kubernetes Metrics Server 是一个用于收集和提供集群资源使用情况数据的工具。它与 cluster-capacity 结合使用,可以帮助你更全面地了解集群的资源使用情况和剩余容量。
4.2 Prometheus
Prometheus 是一个开源的监控和报警工具,广泛用于 Kubernetes 集群的监控。通过 Prometheus,你可以收集和分析集群的各项指标,包括 CPU、内存、磁盘等资源的使用情况,从而更好地规划和优化集群资源。
4.3 Kubernetes Dashboard
Kubernetes Dashboard 是一个 Web 界面,用于管理和监控 Kubernetes 集群。通过 Dashboard,你可以直观地查看集群的资源使用情况和 Pod 的调度状态,结合 cluster-capacity 工具,可以更有效地管理集群资源。
通过以上模块的介绍,你应该能够快速上手并使用 cluster-capacity 项目来分析和管理 Kubernetes 集群的资源容量。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00