Kube-Capacity 使用教程
1. 项目介绍
Kube-Capacity 是一个简单而强大的 CLI 工具,旨在提供 Kubernetes 集群中资源请求、限制和利用率的概览。它结合了 kubectl top 和 kubectl describe 的输出,为用户提供了一个易于使用的 CLI 工具,专注于集群资源的管理。Kube-Capacity 可以帮助用户快速了解集群中各个节点的资源使用情况,包括 CPU 和内存的请求、限制以及实际利用率。
2. 项目快速启动
2.1 安装
Kube-Capacity 可以通过多种方式进行安装,以下是几种常见的安装方法:
2.1.1 使用 Homebrew 安装
brew tap robscott/tap
brew install robscott/tap/kube-capacity
2.1.2 使用 Krew 安装
kubectl krew install resource-capacity
2.1.3 手动下载二进制文件
你也可以直接从 GitHub 发布页面下载预编译的二进制文件:
wget https://github.com/robscott/kube-capacity/releases/download/v0.8.0/kube-capacity_0.8.0_linux_amd64.tar.gz
tar -xzf kube-capacity_0.8.0_linux_amd64.tar.gz
sudo mv kube-capacity /usr/local/bin/
2.2 基本使用
安装完成后,你可以通过以下命令查看集群中节点的资源使用情况:
kube-capacity
默认情况下,该命令会输出一个节点列表,其中包含 CPU 和内存资源请求的总数以及在它们上运行的所有 pod 的限制。
2.3 高级使用
2.3.1 包含 Pod 信息
如果你想查看更详细的输出,可以包含 pod 信息:
kube-capacity --pods
2.3.2 包含资源利用率
为了帮助了解资源利用率与配置的请求和限制的比较,可以包含资源利用率信息:
kube-capacity --util
2.3.3 显示可用资源
如果你想更清楚地看到节点上可用的总资源,可以使用 --available 选项:
kube-capacity --available
3. 应用案例和最佳实践
3.1 监控集群资源使用情况
Kube-Capacity 可以帮助你快速监控集群中各个节点的资源使用情况。通过定期运行 kube-capacity 命令,你可以及时发现资源瓶颈,并采取相应的措施进行优化。
3.2 资源请求和限制的优化
通过查看 Pod 的资源请求和限制,你可以优化这些配置,确保集群资源得到合理利用。例如,你可以通过以下命令查看某个命名空间下的 Pod 资源配置:
kube-capacity --namespace default --pods
3.3 资源利用率的监控
通过包含资源利用率信息,你可以了解实际的资源使用情况,并与配置的请求和限制进行比较。这有助于你调整资源配置,避免资源浪费或不足。
4. 典型生态项目
4.1 Metrics Server
Kube-Capacity 依赖于 Metrics Server 来获取资源利用率信息。如果你还没有在集群中安装 Metrics Server,可以通过以下命令进行安装:
kubectl apply -f https://github.com/kubernetes-sigs/metrics-server/releases/latest/download/components.yaml
4.2 Krew
Krew 是一个 Kubernetes 插件管理器,可以帮助你轻松安装和管理 Kubernetes 插件。通过 Krew,你可以方便地安装和管理 Kube-Capacity 插件。
4.3 Helm
Helm 是 Kubernetes 的包管理工具,可以帮助你快速部署和管理 Kubernetes 应用。虽然 Kube-Capacity 本身不需要 Helm,但你可以使用 Helm 来管理 Metrics Server 等依赖项。
通过以上步骤,你可以快速上手并使用 Kube-Capacity 来管理 Kubernetes 集群的资源。希望这篇教程对你有所帮助!
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00