**ZITS_inpainting项目指南**
2024-09-28 19:11:52作者:丁柯新Fawn
1. 目录结构及介绍
ZITS_inpainting项目是基于CVPR 2022会议发表的“增量Transformer结构增强图像修复与掩码位置编码”论文实现的。其目录结构精心设计,以支持高效的代码组织和研究重用。以下是关键组件的概览:
- config_list: 包含配置文件,用于指导模型训练和推理过程。
- data_list: 数据列表文件,用于指定训练和测试数据的位置。
- datasets: 数据集处理相关的脚本或辅助函数。
- imgs: 可能包含示例图像或测试用的基准图。
- src: 核心源代码所在目录,包括模型定义、训练和测试逻辑等。
- static: 静态资源文件,可能包含报告、结果展示等非执行文件。
- test_imgs: 专门用于测试阶段的图像集合。
- FTR_inference.py, FTR_train.py, TSR_inference.py, TSR_train.py: 分别为推理和训练脚本,前者用于预测阶段,后者涉及模型的学习过程。
- lsm_hawp_inference.py: 推理脚本,用于从输入图片中提取线框信息。
- LICENSE, README.md: 许可证文件和项目简介。
- requirement.txt: 列出了项目运行所需的第三方库。
2. 项目启动文件介绍
主要启动文件
- FTR_inference.py: 进行单张或多张图像的推理,适用于已经训练好的模型,通过指定预训练模型路径和配置文件来恢复图像。
- FTR_train.py: 负责模型的训练,用户需提供数据路径、配置文件和相关参数设置来开始训练过程。
- TSR_inference.py, TSR_train.py: 分别对应于结构恢复模型的推理和训练,它们在ZITS框架的初步阶段使用,对低分辨率图像结构进行恢复。
这些脚本通常接收命令行参数,允许用户灵活地定制化执行流程,如选择不同的GPU设备、配置文件等。
3. 项目的配置文件介绍
配置文件主要位于config_list
目录下,采用.yml
格式。配置文件是ZITS_inpainting项目的核心组成部分,提供了详细的模型参数、数据路径、训练设置(如批次大小、学习率)以及网络架构的具体配置。例如,config_ZITS_places2.yml
很可能包含了针对Places2数据集的特定设置。用户可以根据实际需求调整这些配置文件中的参数,以适应不同的实验场景或者数据集。
配置文件一般结构包括但不限于:
- 模型设置: 指定使用的模型类型、各部分网络的细节。
- 数据路径: 训练和验证数据的地址。
- 训练参数: 包括迭代次数、学习率策略、损失函数的选择等。
- 硬件设置: 如GPU的选择、分布式训练的相关配置(如果适用)。
为了有效地使用此项目,用户应详细阅读每种脚本的说明,并仔细调整配置文件以符合自己的实验条件和计算资源。此外,确保系统环境已按要求搭建,安装必要的依赖,以保证项目能够顺利运行。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0118DuiLib_Ultimate
DuiLib_Ultimate是duilib库的增强拓展版,库修复了大量用户在开发使用中反馈的Bug,新增了更加贴近产品开发需求的功能,并持续维护更新。C++03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile03
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选
收起

deepin linux kernel
C
22
6

React Native鸿蒙化仓库
C++
192
270

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
909
541

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
341
1.21 K

openGauss kernel ~ openGauss is an open source relational database management system
C++
142
188

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
377
387

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
63
58

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.1 K
0

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
87
4