**ZITS_inpainting项目指南**
2024-09-28 08:04:34作者:丁柯新Fawn
1. 目录结构及介绍
ZITS_inpainting项目是基于CVPR 2022会议发表的“增量Transformer结构增强图像修复与掩码位置编码”论文实现的。其目录结构精心设计,以支持高效的代码组织和研究重用。以下是关键组件的概览:
- config_list: 包含配置文件,用于指导模型训练和推理过程。
- data_list: 数据列表文件,用于指定训练和测试数据的位置。
- datasets: 数据集处理相关的脚本或辅助函数。
- imgs: 可能包含示例图像或测试用的基准图。
- src: 核心源代码所在目录,包括模型定义、训练和测试逻辑等。
- static: 静态资源文件,可能包含报告、结果展示等非执行文件。
- test_imgs: 专门用于测试阶段的图像集合。
- FTR_inference.py, FTR_train.py, TSR_inference.py, TSR_train.py: 分别为推理和训练脚本,前者用于预测阶段,后者涉及模型的学习过程。
- lsm_hawp_inference.py: 推理脚本,用于从输入图片中提取线框信息。
- LICENSE, README.md: 许可证文件和项目简介。
- requirement.txt: 列出了项目运行所需的第三方库。
2. 项目启动文件介绍
主要启动文件
- FTR_inference.py: 进行单张或多张图像的推理,适用于已经训练好的模型,通过指定预训练模型路径和配置文件来恢复图像。
- FTR_train.py: 负责模型的训练,用户需提供数据路径、配置文件和相关参数设置来开始训练过程。
- TSR_inference.py, TSR_train.py: 分别对应于结构恢复模型的推理和训练,它们在ZITS框架的初步阶段使用,对低分辨率图像结构进行恢复。
这些脚本通常接收命令行参数,允许用户灵活地定制化执行流程,如选择不同的GPU设备、配置文件等。
3. 项目的配置文件介绍
配置文件主要位于config_list目录下,采用.yml格式。配置文件是ZITS_inpainting项目的核心组成部分,提供了详细的模型参数、数据路径、训练设置(如批次大小、学习率)以及网络架构的具体配置。例如,config_ZITS_places2.yml很可能包含了针对Places2数据集的特定设置。用户可以根据实际需求调整这些配置文件中的参数,以适应不同的实验场景或者数据集。
配置文件一般结构包括但不限于:
- 模型设置: 指定使用的模型类型、各部分网络的细节。
- 数据路径: 训练和验证数据的地址。
- 训练参数: 包括迭代次数、学习率策略、损失函数的选择等。
- 硬件设置: 如GPU的选择、分布式训练的相关配置(如果适用)。
为了有效地使用此项目,用户应详细阅读每种脚本的说明,并仔细调整配置文件以符合自己的实验条件和计算资源。此外,确保系统环境已按要求搭建,安装必要的依赖,以保证项目能够顺利运行。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
438
3.33 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
817
385
Ascend Extension for PyTorch
Python
246
285
暂无简介
Dart
701
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
273
328
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
280
126
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
仓颉编译器源码及 cjdb 调试工具。
C++
139
871