SWA Object Detection 项目教程
2024-09-25 17:00:51作者:霍妲思
1. 项目介绍
SWA Object Detection 是一个基于 Stochastic Weights Averaging (SWA) 技术的目标检测项目。该项目旨在通过平均多个检测模型的权重来提高目标检测器的性能,而无需增加推理成本或对检测器进行任何更改。SWA 技术最初用于提高深度神经网络的泛化能力,该项目将其应用于目标检测和实例分割任务,并在 COCO 基准测试中取得了显著的性能提升。
项目的主要贡献包括:
- 系统地研究了 SWA 在目标检测中的应用效果。
- 提供了多种流行的目标检测器的 SWA 模型,如 Mask RCNN、Faster RCNN、RetinaNet、FCOS、YOLOv3 和 VFNet。
- 提供了详细的代码和配置文件,方便用户进行 SWA 训练。
2. 项目快速启动
2.1 安装依赖
首先,确保你已经安装了 PyTorch 和 CUDA。然后,按照以下步骤安装项目依赖:
# 克隆项目仓库
git clone https://github.com/hyz-xmaster/swa_object_detection.git
cd swa_object_detection
# 安装依赖
pip install -r requirements.txt
# 安装 pycocotools
pip install "git+https://github.com/open-mmlab/cocoapi.git#subdirectory=pycocotools"
2.2 运行示例
以下是一个简单的示例,展示如何使用 SWA 技术训练一个 Mask RCNN 模型:
# 启动训练
./tools/dist_train.sh configs/swa/swa_mask_rcnn_r101_fpn_2x_coco.py 8
3. 应用案例和最佳实践
3.1 应用案例
SWA Object Detection 可以应用于各种目标检测任务,包括但不限于:
- 自动驾驶中的行人检测
- 医学影像中的病变检测
- 安防监控中的物体识别
3.2 最佳实践
- 选择合适的模型:根据任务需求选择合适的预训练模型,如 Mask RCNN 或 Faster RCNN。
- 调整学习率:在 SWA 训练阶段,使用循环学习率策略,通常在最后 12 个 epoch 进行。
- 模型平均:在 SWA 训练结束后,平均多个检查点的权重以获得最终的检测模型。
4. 典型生态项目
- MMDetection:该项目基于 MMDetection 框架,MMDetection 是一个强大的目标检测开源工具箱,支持多种目标检测算法。
- PyTorch:SWA Object Detection 使用 PyTorch 作为深度学习框架,PyTorch 提供了灵活的 API 和强大的计算能力。
- COCO API:用于处理 COCO 数据集的 API,提供了数据加载和评估功能。
通过以上步骤,你可以快速上手 SWA Object Detection 项目,并在实际应用中获得更好的目标检测性能。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137