SWA 目标检测:提升模型性能的简单有效方法
2024-09-26 09:53:42作者:谭伦延
项目介绍
在计算机视觉领域,目标检测是一个至关重要的任务,广泛应用于自动驾驶、安防监控、医疗影像分析等多个领域。然而,提升目标检测模型的性能往往需要复杂的模型架构或大量的计算资源。现在,我们为您介绍一个简单而有效的方法——SWA 目标检测,它能够在不增加推理成本的情况下,显著提升模型的准确性。
SWA(Stochastic Weights Averaging)是一种在深度学习中用于提升模型泛化能力的技术。通过在训练过程中使用周期性学习率,并在最后12个epoch中平均这些checkpoint,您可以轻松获得约1.0 AP的提升。这一方法不仅适用于目标检测,还可以扩展到实例分割等其他视觉任务。
项目技术分析
SWA 目标检测项目基于 MMDetection 框架,这是一个广泛使用的开源目标检测工具包。项目的主要技术亮点包括:
- SWA 训练阶段:在传统的训练阶段之后,增加一个SWA训练阶段,使用周期性学习率策略,并在最后12个epoch中平均模型权重。
- SWA Hook:实现了一个SWA hook,用于处理平均后的模型,并提供方便的配置选项。
- SWA 配置文件:提供了一系列配置文件,方便用户在不同的检测器上部署SWA训练。
项目及技术应用场景
SWA 目标检测技术适用于以下场景:
- 提升现有模型的性能:如果您已经有一个目标检测模型,但希望在不增加推理成本的情况下进一步提升其性能,SWA 是一个理想的选择。
- 快速实验与验证:对于研究人员和开发者来说,SWA 提供了一种快速验证新想法的方法,无需对现有模型架构进行大幅修改。
- 实例分割:虽然项目主要针对目标检测,但SWA技术同样适用于实例分割任务,帮助提升分割模型的准确性。
项目特点
- 简单易用:SWA 目标检测的实现非常简单,用户只需在现有训练流程中增加一个SWA训练阶段,即可获得显著的性能提升。
- 无额外推理成本:与模型架构的改进不同,SWA 不会增加模型的推理时间,保持了高效的运行速度。
- 广泛的适用性:SWA 不仅适用于多种流行的目标检测器,还可以扩展到其他视觉任务,如实例分割。
- 丰富的配置选项:项目提供了多种配置文件,用户可以根据自己的需求调整SWA训练的参数,灵活性极高。
结语
SWA 目标检测项目为提升目标检测模型的性能提供了一种简单而有效的方法。无论您是研究人员、开发者还是企业用户,都可以通过SWA技术轻松获得更好的检测结果。立即尝试 SWA 目标检测,体验其带来的性能提升吧!
项目地址: SWA Object Detection
论文链接: arXiv:2012.12645
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.73 K
Ascend Extension for PyTorch
Python
332
396
暂无简介
Dart
766
189
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
878
586
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
166
React Native鸿蒙化仓库
JavaScript
302
352
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
749
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
985
246