SSD-Keras 项目使用教程
1. 项目介绍
SSD-Keras 是一个基于 Keras 框架实现的目标检测模型,它是 Single Shot MultiBox Detector (SSD) 的 Keras 版本。SSD 是一种高效的目标检测算法,能够在单次前向传播中完成目标的定位和分类。该项目由 bubbliiiing 维护,提供了完整的源码和训练脚本,可以用于训练自己的目标检测模型。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了以下依赖:
tensorflow-gpu==1.13.1
keras==2.1.5
2.2 克隆项目
使用 Git 克隆项目到本地:
git clone https://github.com/bubbliiiing/ssd-keras.git
cd ssd-keras
2.3 下载预训练权重
你可以从百度云下载预训练权重文件 ssd_weights.h5
,并将其放置在 model_data
目录下。
链接: https://pan.baidu.com/s/1A3pHj4dy49Q6HurYfXP9KQ
提取码: h5wm
2.4 运行预测脚本
修改 predict.py
文件中的 model_path
和 classes_path
参数,使其指向你下载的权重文件和类别文件。
_defaults = {
"model_path": 'model_data/ssd_weights.h5',
"classes_path": 'model_data/voc_classes.txt',
"input_shape": [300, 300],
"confidence": 0.5,
"nms_iou": 0.45,
"letterbox_image": False,
}
然后运行预测脚本:
python predict.py
输入图片路径即可进行目标检测。
3. 应用案例和最佳实践
3.1 训练自己的数据集
如果你想要训练自己的数据集,可以按照以下步骤进行:
-
准备数据集:将标签文件放在
VOCdevkit/VOC2007/Annotation
目录下,将图片文件放在VOCdevkit/VOC2007/JPEGImages
目录下。 -
生成训练文件:修改
voc_annotation.py
文件中的classes_path
参数,使其指向你的类别文件,然后运行该脚本生成训练文件。 -
开始训练:修改
train.py
文件中的classes_path
参数,然后运行训练脚本开始训练。
3.2 多GPU训练
项目支持多GPU训练,你可以在 train.py
中设置 gpu_num
参数来指定使用的GPU数量。
4. 典型生态项目
4.1 Mobilenet-SSD-Keras
这是一个基于 MobileNet 的 SSD 实现,适用于移动设备和嵌入式系统。
项目地址: https://github.com/bubbliiiing/mobilenet-ssd-keras
4.2 SSD-Keras_Tensorflow
这是一个基于 TensorFlow 的 SSD 实现,提供了更多的灵活性和性能优化。
项目地址: https://github.com/jedol/SSD-Keras_Tensorflow
通过这些生态项目,你可以根据自己的需求选择合适的 SSD 实现,并进行进一步的定制和优化。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0230PublicCMS
266万多行代码修改 持续迭代9年 现代化java cms完整开源,轻松支撑千万数据、千万PV;支持静态化,服务器端包含,多级缓存,全文搜索复杂搜索,后台支持手机操作; 目前已经拥有全球0.0005%(w3techs提供的数据)的用户,语言支持中、繁、日、英;是一个已走向海外的成熟CMS产品Java00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。01- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选









