SSD-Keras 项目使用教程
1. 项目介绍
SSD-Keras 是一个基于 Keras 框架实现的目标检测模型,它是 Single Shot MultiBox Detector (SSD) 的 Keras 版本。SSD 是一种高效的目标检测算法,能够在单次前向传播中完成目标的定位和分类。该项目由 bubbliiiing 维护,提供了完整的源码和训练脚本,可以用于训练自己的目标检测模型。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了以下依赖:
tensorflow-gpu==1.13.1
keras==2.1.5
2.2 克隆项目
使用 Git 克隆项目到本地:
git clone https://github.com/bubbliiiing/ssd-keras.git
cd ssd-keras
2.3 下载预训练权重
你可以从百度云下载预训练权重文件 ssd_weights.h5,并将其放置在 model_data 目录下。
链接: https://pan.baidu.com/s/1A3pHj4dy49Q6HurYfXP9KQ
提取码: h5wm
2.4 运行预测脚本
修改 predict.py 文件中的 model_path 和 classes_path 参数,使其指向你下载的权重文件和类别文件。
_defaults = {
"model_path": 'model_data/ssd_weights.h5',
"classes_path": 'model_data/voc_classes.txt',
"input_shape": [300, 300],
"confidence": 0.5,
"nms_iou": 0.45,
"letterbox_image": False,
}
然后运行预测脚本:
python predict.py
输入图片路径即可进行目标检测。
3. 应用案例和最佳实践
3.1 训练自己的数据集
如果你想要训练自己的数据集,可以按照以下步骤进行:
-
准备数据集:将标签文件放在
VOCdevkit/VOC2007/Annotation目录下,将图片文件放在VOCdevkit/VOC2007/JPEGImages目录下。 -
生成训练文件:修改
voc_annotation.py文件中的classes_path参数,使其指向你的类别文件,然后运行该脚本生成训练文件。 -
开始训练:修改
train.py文件中的classes_path参数,然后运行训练脚本开始训练。
3.2 多GPU训练
项目支持多GPU训练,你可以在 train.py 中设置 gpu_num 参数来指定使用的GPU数量。
4. 典型生态项目
4.1 Mobilenet-SSD-Keras
这是一个基于 MobileNet 的 SSD 实现,适用于移动设备和嵌入式系统。
项目地址: https://github.com/bubbliiiing/mobilenet-ssd-keras
4.2 SSD-Keras_Tensorflow
这是一个基于 TensorFlow 的 SSD 实现,提供了更多的灵活性和性能优化。
项目地址: https://github.com/jedol/SSD-Keras_Tensorflow
通过这些生态项目,你可以根据自己的需求选择合适的 SSD 实现,并进行进一步的定制和优化。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C095
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00