SSD-Keras 项目使用教程
2024-09-28 15:10:21作者:劳婵绚Shirley
1. 项目目录结构及介绍
ssd-keras/
├── VOCdevkit/
│ └── VOC2007/
│ ├── Annotations/
│ ├── JPEGImages/
│ └── ...
├── logs/
├── model_data/
├── nets/
├── utils/
├── .gitignore
├── LICENSE
├── README.md
├── get_map.py
├── predict.py
├── requirements.txt
├── ssd.py
├── summary.py
├── train.py
├── voc_annotation.py
└── 常见问题汇总.md
目录结构介绍
- VOCdevkit/: 存放VOC数据集的文件夹,包含训练集、验证集和测试集的图片和标注文件。
- logs/: 存放训练过程中生成的日志文件和模型权重文件。
- model_data/: 存放预训练模型权重文件和类别标签文件。
- nets/: 存放SSD模型的网络结构定义文件。
- utils/: 存放一些辅助函数和工具文件。
- .gitignore: Git忽略文件配置。
- LICENSE: 项目许可证文件。
- README.md: 项目说明文档。
- get_map.py: 用于评估模型性能的脚本。
- predict.py: 用于模型预测的脚本。
- requirements.txt: 项目依赖库列表。
- ssd.py: SSD模型的主文件,包含模型定义和预测逻辑。
- summary.py: 用于生成模型结构摘要的脚本。
- train.py: 用于训练模型的脚本。
- voc_annotation.py: 用于处理VOC数据集的脚本。
- 常见问题汇总.md: 常见问题及解答文档。
2. 项目启动文件介绍
train.py
train.py 是用于训练SSD模型的启动文件。通过运行该脚本,可以开始训练模型。
python train.py
predict.py
predict.py 是用于模型预测的启动文件。通过运行该脚本,可以对输入的图片进行目标检测。
python predict.py
get_map.py
get_map.py 是用于评估模型性能的启动文件。通过运行该脚本,可以计算模型在测试集上的mAP值。
python get_map.py
3. 项目配置文件介绍
requirements.txt
requirements.txt 文件列出了项目运行所需的Python依赖库。可以通过以下命令安装所有依赖:
pip install -r requirements.txt
ssd.py
ssd.py 文件中包含了模型的配置参数,如模型路径、类别路径、输入图像大小等。用户可以根据需要修改这些参数。
_defaults = {
"model_path": 'model_data/ssd_weights.h5',
"classes_path": 'model_data/voc_classes.txt',
"input_shape": [300, 300],
"confidence": 0.5,
"nms_iou": 0.45,
"anchors_size": [30, 60, 111, 162, 213, 264, 315],
"letterbox_image": False,
}
voc_annotation.py
voc_annotation.py 文件用于处理VOC数据集,生成训练和验证所需的标注文件。用户可以根据需要修改文件中的参数。
annotation_mode = 2
classes_path = 'model_data/voc_classes.txt'
通过以上配置文件和启动文件,用户可以方便地进行模型训练、预测和评估。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178