SSD-Keras 项目使用教程
2024-09-28 15:10:21作者:劳婵绚Shirley
1. 项目目录结构及介绍
ssd-keras/
├── VOCdevkit/
│ └── VOC2007/
│ ├── Annotations/
│ ├── JPEGImages/
│ └── ...
├── logs/
├── model_data/
├── nets/
├── utils/
├── .gitignore
├── LICENSE
├── README.md
├── get_map.py
├── predict.py
├── requirements.txt
├── ssd.py
├── summary.py
├── train.py
├── voc_annotation.py
└── 常见问题汇总.md
目录结构介绍
- VOCdevkit/: 存放VOC数据集的文件夹,包含训练集、验证集和测试集的图片和标注文件。
- logs/: 存放训练过程中生成的日志文件和模型权重文件。
- model_data/: 存放预训练模型权重文件和类别标签文件。
- nets/: 存放SSD模型的网络结构定义文件。
- utils/: 存放一些辅助函数和工具文件。
- .gitignore: Git忽略文件配置。
- LICENSE: 项目许可证文件。
- README.md: 项目说明文档。
- get_map.py: 用于评估模型性能的脚本。
- predict.py: 用于模型预测的脚本。
- requirements.txt: 项目依赖库列表。
- ssd.py: SSD模型的主文件,包含模型定义和预测逻辑。
- summary.py: 用于生成模型结构摘要的脚本。
- train.py: 用于训练模型的脚本。
- voc_annotation.py: 用于处理VOC数据集的脚本。
- 常见问题汇总.md: 常见问题及解答文档。
2. 项目启动文件介绍
train.py
train.py 是用于训练SSD模型的启动文件。通过运行该脚本,可以开始训练模型。
python train.py
predict.py
predict.py 是用于模型预测的启动文件。通过运行该脚本,可以对输入的图片进行目标检测。
python predict.py
get_map.py
get_map.py 是用于评估模型性能的启动文件。通过运行该脚本,可以计算模型在测试集上的mAP值。
python get_map.py
3. 项目配置文件介绍
requirements.txt
requirements.txt 文件列出了项目运行所需的Python依赖库。可以通过以下命令安装所有依赖:
pip install -r requirements.txt
ssd.py
ssd.py 文件中包含了模型的配置参数,如模型路径、类别路径、输入图像大小等。用户可以根据需要修改这些参数。
_defaults = {
"model_path": 'model_data/ssd_weights.h5',
"classes_path": 'model_data/voc_classes.txt',
"input_shape": [300, 300],
"confidence": 0.5,
"nms_iou": 0.45,
"anchors_size": [30, 60, 111, 162, 213, 264, 315],
"letterbox_image": False,
}
voc_annotation.py
voc_annotation.py 文件用于处理VOC数据集,生成训练和验证所需的标注文件。用户可以根据需要修改文件中的参数。
annotation_mode = 2
classes_path = 'model_data/voc_classes.txt'
通过以上配置文件和启动文件,用户可以方便地进行模型训练、预测和评估。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895