CodeGeeX4模型在BigCodeBench基准测试中的性能复现与分析
2025-07-06 14:43:23作者:俞予舒Fleming
背景介绍
CodeGeeX4作为清华大学知识工程组(KEG)开发的大规模代码生成模型,在BigCodeBench代码生成基准测试中展现了优异的性能表现。近期有开发者尝试复现该模型在BigCodeBench上的评测结果,发现与官方报告存在细微差异,这引发了关于模型使用方式和评测设置的深入探讨。
评测结果差异分析
在初始复现过程中,开发者观察到两个关键指标:
- Complete模式得分:49.0(与官方48.9接近)
- Instruct模式得分:38.9(低于官方40.4)
经过与开发团队的沟通,发现差异主要来源于以下因素:
- 提示模板差异:CodeGeeX4默认使用中文系统提示词,而初始复现可能使用了英文模板
- 解码策略:官方评测采用greedy解码(temperature=0),而非采样方法
- 提示词结构:中文提示需要在指令后添加"\n根据描述,完成代码\n"的特殊格式
技术细节解析
CodeGeeX4的对话模板采用特殊标记结构:
<|system|>
[系统提示内容]
<|user|>
[用户指令]
<|assistant|>
[模型响应]
对于BigCodeBench评测,关键的技术要点包括:
- 系统提示:包含模型身份定义和能力描述
- 任务指令:需要严格遵循基准测试的输入格式要求
- 代码补全:要求模型从指定的导入语句开始完成函数实现
最佳实践建议
基于此次复现经验,我们总结出使用CodeGeeX4进行基准测试的推荐做法:
- 语言选择:优先使用中文系统提示词以获得最佳性能
- 解码设置:评测时应当使用确定性解码策略(temperature=0)
- 提示工程:严格遵循"根据描述,完成代码"的指令格式
- 环境一致性:确保评测环境与官方设置一致,包括随机种子等
结论与展望
通过细致的参数调整和提示工程,最终复现结果与官方报告仅存在0.4%的微小差异(40.0 vs 40.4),验证了CodeGeeX4模型性能的可靠性。这一案例也凸显了大型语言模型评测中细节设置的重要性,为后续的模型比较和性能分析提供了有价值的参考。
未来工作可以进一步探索:
- 不同语言提示对模型性能的影响机制
- 解码策略与任务类型的适配关系
- 更全面的鲁棒性测试方案
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 开源电子设计自动化利器:KiCad EDA全方位使用指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 Python案例资源下载 - 从入门到精通的完整项目代码合集 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
247
2.45 K
deepin linux kernel
C
24
6
仓颉编译器源码及 cjdb 调试工具。
C++
116
89
React Native鸿蒙化仓库
JavaScript
217
297
暂无简介
Dart
546
119
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.01 K
595
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
409
Ascend Extension for PyTorch
Python
85
118
仓颉编程语言运行时与标准库。
Cangjie
124
102
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
592
121