CodeGeeX4模型在BigCodeBench基准测试中的性能复现与分析
2025-07-06 21:22:43作者:俞予舒Fleming
背景介绍
CodeGeeX4作为清华大学知识工程组(KEG)开发的大规模代码生成模型,在BigCodeBench代码生成基准测试中展现了优异的性能表现。近期有开发者尝试复现该模型在BigCodeBench上的评测结果,发现与官方报告存在细微差异,这引发了关于模型使用方式和评测设置的深入探讨。
评测结果差异分析
在初始复现过程中,开发者观察到两个关键指标:
- Complete模式得分:49.0(与官方48.9接近)
- Instruct模式得分:38.9(低于官方40.4)
经过与开发团队的沟通,发现差异主要来源于以下因素:
- 提示模板差异:CodeGeeX4默认使用中文系统提示词,而初始复现可能使用了英文模板
- 解码策略:官方评测采用greedy解码(temperature=0),而非采样方法
- 提示词结构:中文提示需要在指令后添加"\n根据描述,完成代码\n"的特殊格式
技术细节解析
CodeGeeX4的对话模板采用特殊标记结构:
<|system|>
[系统提示内容]
<|user|>
[用户指令]
<|assistant|>
[模型响应]
对于BigCodeBench评测,关键的技术要点包括:
- 系统提示:包含模型身份定义和能力描述
- 任务指令:需要严格遵循基准测试的输入格式要求
- 代码补全:要求模型从指定的导入语句开始完成函数实现
最佳实践建议
基于此次复现经验,我们总结出使用CodeGeeX4进行基准测试的推荐做法:
- 语言选择:优先使用中文系统提示词以获得最佳性能
- 解码设置:评测时应当使用确定性解码策略(temperature=0)
- 提示工程:严格遵循"根据描述,完成代码"的指令格式
- 环境一致性:确保评测环境与官方设置一致,包括随机种子等
结论与展望
通过细致的参数调整和提示工程,最终复现结果与官方报告仅存在0.4%的微小差异(40.0 vs 40.4),验证了CodeGeeX4模型性能的可靠性。这一案例也凸显了大型语言模型评测中细节设置的重要性,为后续的模型比较和性能分析提供了有价值的参考。
未来工作可以进一步探索:
- 不同语言提示对模型性能的影响机制
- 解码策略与任务类型的适配关系
- 更全面的鲁棒性测试方案
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C045
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
698
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
280
React Native鸿蒙化仓库
JavaScript
270
328