首页
/ 探索Tangent:Python的自动微分新星

探索Tangent:Python的自动微分新星

2024-05-22 15:26:16作者:段琳惟

项目简介

Tangent是一个新颖的免费开源Python库,专为自动微分而设计。它在机器学习领域中填补了一项独特的空白,不同于传统的运行时追踪(如PyTorch)或提前构建数据流图(如TensorFlow),Tangent直接对Python源代码进行前瞻式自动微分,并将衍生代码作为输出。

Autodiff Tool Space

这个项目特别适合那些希望在Python中编写和阅读自动导数代码的研究人员和学生,同时也追求速度和灵活性。Tangent支持广泛的Python语言子集,提供其他Python ML库不具备的特性,并且与TensorFlow和NumPy兼容。

技术剖析

Tangent的核心是通过Python的标准库inspect.getsource获取函数的源码,然后使用ast.parse解析成抽象语法树(AST),并反向遍历该树来计算梯度。每遇到一个语法节点(例如,赋值语句c=a+b对应一个ast.Assign节点),Tangent会查找匹配的反向过程“配方”,并将这个反向计算添加到衍生函数的末尾。这种从后向前处理的方式正是其得名“反向模式自动微分”的原因。

Tangent还支持自动微分的多个关键特性,包括:

  • TensorFlow Eager操作的差异化
  • 子程序调用
  • 控制流程(if语句和循环)

应用场景

TensorFlow Eager整合

Tangent可以轻易地对包含TensorFlow Eager函数的模型进行差异化,使得在Eager执行环境下也能利用自动微分的优势。

可复用代码结构

Tangent允许在模型代码中使用子程序,提高代码可读性和重用性,同时保持自动微分的功能。

复杂控制流

即使面对复杂的条件语句和循环结构,Tangent也能生成正确的梯度计算代码。

项目特点

  • 易读性:Tangent生成的导数代码可以像普通Python代码一样阅读和调试。
  • 定制性:轻松注册自定义梯度,甚至可以在源代码层面进行“导数手术”。
  • 灵活适应:兼容Python的大量语法和TensorFlow/NumPy操作,适用于多种机器学习场景。
  • 调试友好:内置的insert_grad_of功能使得在后向传播过程中插入额外代码变得简单,便于定位问题和实验性调整。

结论

Tangent不仅是一款强大的工具,而且为Python自动微分开辟了新的道路。它的独特设计和丰富的功能使其成为研究人员、开发人员和学生的理想选择,用于构建、理解和优化复杂的机器学习模型。无论是初学者还是经验丰富的开发者,都可以从Tangent中获益,体验代码清晰、运行高效、调试便捷的自动微分。立即尝试Tangent,开启您的智能之旅吧!

安装说明:

pip install tangent

更多示例和详细信息,请访问Tangent GitHub仓库

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
828
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cjmarkdown4cj
一个markdown解析和展示的库
Cangjie
10
1