利用潜伏扩散模型的线性逆问题求解—— provably 后验采样框架
2024-06-25 19:48:42作者:郜逊炳
在这个令人兴奋的开源项目中,我们有幸接触到了一种创新的方法,它将预训练的潜伏扩散模型应用于线性逆问题的解决。Solving Linear Inverse Problems Provably via Posterior Sampling with Latent Diffusion Models,这份论文的开源实现以 PyTorch 编写,提供了一个全新的框架,超越了先前仅限于像素空间扩散模型的算法。
项目介绍
这个项目的核心是一个先进的算法,它首次利用潜伏扩散模型来处理广义的逆问题。通过理论上对新算法的深入分析,作者证明了在线性模型设置下的样本恢复是可能的。在实践中,无论是在随机填充、块填充、去噪、去模糊、去条纹还是超分辨率等任务上,该方法都在实验中超越了现有的后验采样算法。

项目还提供了一个直观的Web应用程序,让用户可以直接体验这一先进技术的效果。从左侧输入损坏或模糊的图像,右侧则展示了经过算法处理后的清晰图像。
项目技术分析
与传统方法不同,本项目提出的框架直接在潜伏空间进行操作,从而避免了像素级操作的局限性。利用预先训练好的潜伏扩散模型,项目能够模拟出数据的真实分布,进而更好地解决逆问题。不仅如此,该框架还提供了理论保证,确保在特定条件下能恢复原始信号。

对比当前市场上基于稳定扩散的商业服务,这个开源解决方案在多个实际案例中表现出色。
应用场景
- 图像修复:包括随机像素丢失(随机填充)、局部区域缺失(块填充)和噪声去除。
- 图像增强:如高斯滤波器引起的模糊(高斯去模糊)和动态运动造成的模糊(运动去模糊)。
- 超分辨率:提升低分辨率图像至高分辨率。
项目特点
- 理论支持:提供严格的数学分析,证明在特定线性模型中的样本恢复能力。
- 性能优越:在各种逆问题中优于现有方法,尤其在与商业稳定扩散服务的比较中脱颖而出。
- 易用性:基于GPU运行,结构清晰的Python代码和shell脚本使复现研究变得简单。
- 灵活性:适应广泛的线性逆问题,并且允许通过调整参数
gamma和omega优化结果。
为了开始探索这个项目,首先确保满足所有依赖项,然后按照提供的shell脚本执行相应的实验。项目团队对不同逆问题提供了详细的结果展示,方便用户理解其效果。
如果你对解决线性逆问题或者图像处理有兴趣,这个项目无疑值得你投入时间和精力去学习和应用。别忘了引用相关研究成果,向贡献者致敬!
@inproceedings{
rout2023solving,
title={Solving Linear Inverse Problems Provably via Posterior Sampling with Latent Diffusion Models},
author={Litu Rout and Negin Raoof and Giannis Daras and Constantine Caramanis and Alex Dimakis and Sanjay Shakkottai},
booktitle={Thirty-seventh Conference on Neural Information Processing Systems},
year={2023},
url={https://openreview.net/forum?id=XKBFdYwfRo}
}
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
323
2.74 K
deepin linux kernel
C
24
7
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
366
3.09 K
Ascend Extension for PyTorch
Python
159
179
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
247
87
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
474
仓颉编译器源码及 cjdb 调试工具。
C++
124
852
React Native鸿蒙化仓库
JavaScript
239
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.08 K
617
暂无简介
Dart
610
137