Apollo自动驾驶项目中Occupancy网络输出未接入规划模块的技术解析
2025-05-07 22:01:06作者:齐冠琰
概述
在Apollo 10版本中,BEVFORMER障碍物检测器的Occupancy网络输出结果仅被保存为本地二进制文件,而未被传递至规划模块。这一技术实现细节引起了开发者社区的关注,本文将深入分析当前实现的技术背景、潜在影响以及未来可能的改进方向。
当前实现分析
在bevformer_obstacle_detector.cc
文件中,GetOccResults()
函数的主要功能是处理Occupancy网络的输出结果,但存在以下技术特点:
-
数据处理流程:
- 对每个体素(voxel)进行类别概率分析
- 筛选超过阈值的有效体素点
- 统计有效体素数量并记录日志
-
输出方式:
- 结果仅被保存到本地二进制文件
- 文件路径由配置参数
occ_save_path
指定 - 文件名使用时间戳作为标识
-
缺失功能:
- 未将处理结果存入
frame_ptr_->detected_objects
- 未通过消息机制向下游模块传递
- 未将处理结果存入
技术背景与考量
这种实现方式反映了Apollo团队在Occupancy网络集成方面的阶段性决策:
- 离线验证优先:当前实现更侧重于结果的可视化和离线分析,便于算法验证和调优
- 系统集成复杂度:Occupancy网络输出与传统障碍物检测结果在数据结构上存在差异
- 性能考量:大规模体素数据的实时传输可能带来性能挑战
潜在影响
这种实现方式对系统功能的影响包括:
- 规划模块限制:规划算法无法直接利用Occupancy网络提供的环境感知信息
- 系统功能割裂:虽然检测结果被保存,但无法形成完整的感知-规划闭环
- 实时性损失:离线处理方式无法满足自动驾驶对实时性的严格要求
未来改进方向
根据技术讨论,Apollo团队可能考虑以下改进方案:
-
点云聚类方案:
- 将Occupancy检测结果转换为点云表示
- 通过聚类算法生成背景障碍物信息
- 与传统障碍物检测结果融合后传递至规划模块
-
端到端集成方案:
- 设计专门的消息类型承载Occupancy网络输出
- 优化数据传输协议,确保实时性
- 在规划模块中直接解析和使用Occupancy信息
-
混合方案:
- 保留离线保存功能用于调试
- 同时实现实时数据传输通道
- 根据应用场景灵活切换
技术建议
对于希望提前使用Occupancy网络结果的开发者,可考虑以下技术路线:
-
自定义数据转发:
- 修改
GetOccResults()
函数,增加结果转发逻辑 - 设计适当的数据结构封装体素信息
- 通过现有消息通道或新建专用通道传递数据
- 修改
-
结果后处理:
- 监控保存的二进制文件变化
- 实现文件监听和实时加载机制
- 将加载的数据转换为规划模块可用的格式
-
性能优化:
- 对体素数据进行压缩或降采样
- 采用共享内存等高效IPC机制
- 实现数据差分更新减少传输量
总结
Apollo 10中Occupancy网络输出的当前处理方式反映了自动驾驶系统开发中的典型权衡:算法验证与系统集成的阶段性侧重。随着Occupancy检测技术的成熟,预计Apollo团队将逐步完善其与规划模块的集成方案。开发者社区可关注后续版本更新,或基于现有实现进行定制化扩展以满足特定需求。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0311- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
868
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
272
311

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
373

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
599
58

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3