Apollo自动驾驶项目中Occupancy网络输出未接入规划模块的技术解析
2025-05-07 10:56:35作者:齐冠琰
概述
在Apollo 10版本中,BEVFORMER障碍物检测器的Occupancy网络输出结果仅被保存为本地二进制文件,而未被传递至规划模块。这一技术实现细节引起了开发者社区的关注,本文将深入分析当前实现的技术背景、潜在影响以及未来可能的改进方向。
当前实现分析
在bevformer_obstacle_detector.cc文件中,GetOccResults()函数的主要功能是处理Occupancy网络的输出结果,但存在以下技术特点:
-
数据处理流程:
- 对每个体素(voxel)进行类别概率分析
- 筛选超过阈值的有效体素点
- 统计有效体素数量并记录日志
-
输出方式:
- 结果仅被保存到本地二进制文件
- 文件路径由配置参数
occ_save_path指定 - 文件名使用时间戳作为标识
-
缺失功能:
- 未将处理结果存入
frame_ptr_->detected_objects - 未通过消息机制向下游模块传递
- 未将处理结果存入
技术背景与考量
这种实现方式反映了Apollo团队在Occupancy网络集成方面的阶段性决策:
- 离线验证优先:当前实现更侧重于结果的可视化和离线分析,便于算法验证和调优
- 系统集成复杂度:Occupancy网络输出与传统障碍物检测结果在数据结构上存在差异
- 性能考量:大规模体素数据的实时传输可能带来性能挑战
潜在影响
这种实现方式对系统功能的影响包括:
- 规划模块限制:规划算法无法直接利用Occupancy网络提供的环境感知信息
- 系统功能割裂:虽然检测结果被保存,但无法形成完整的感知-规划闭环
- 实时性损失:离线处理方式无法满足自动驾驶对实时性的严格要求
未来改进方向
根据技术讨论,Apollo团队可能考虑以下改进方案:
-
点云聚类方案:
- 将Occupancy检测结果转换为点云表示
- 通过聚类算法生成背景障碍物信息
- 与传统障碍物检测结果融合后传递至规划模块
-
端到端集成方案:
- 设计专门的消息类型承载Occupancy网络输出
- 优化数据传输协议,确保实时性
- 在规划模块中直接解析和使用Occupancy信息
-
混合方案:
- 保留离线保存功能用于调试
- 同时实现实时数据传输通道
- 根据应用场景灵活切换
技术建议
对于希望提前使用Occupancy网络结果的开发者,可考虑以下技术路线:
-
自定义数据转发:
- 修改
GetOccResults()函数,增加结果转发逻辑 - 设计适当的数据结构封装体素信息
- 通过现有消息通道或新建专用通道传递数据
- 修改
-
结果后处理:
- 监控保存的二进制文件变化
- 实现文件监听和实时加载机制
- 将加载的数据转换为规划模块可用的格式
-
性能优化:
- 对体素数据进行压缩或降采样
- 采用共享内存等高效IPC机制
- 实现数据差分更新减少传输量
总结
Apollo 10中Occupancy网络输出的当前处理方式反映了自动驾驶系统开发中的典型权衡:算法验证与系统集成的阶段性侧重。随着Occupancy检测技术的成熟,预计Apollo团队将逐步完善其与规划模块的集成方案。开发者社区可关注后续版本更新,或基于现有实现进行定制化扩展以满足特定需求。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134