探索历史文档的未来:ARU-Net像素标签器
2024-06-17 10:25:41作者:伍霜盼Ellen
1、项目介绍
在数字化时代,历史文档的自动解析变得越来越重要。ARU-Net是一个专门用于布局分析的历史文档神经像素标签器,它扩展了著名的U-Net模型,为文本行检测提供了一种两阶段方法。这个开源项目旨在解决历史文档中基线和分离符的定位问题,为古籍数字化提供高效工具。
2、项目技术分析
ARU-Net基于Tensorflow实现,并且支持多种数据增强策略来减少训练所需的数据量。它的核心是一个增强版的U-Net架构,这种网络以卷积神经网络(CNN)为基础,通过跳跃连接融合不同尺度的信息,使得对细节的捕捉更精确。此外,项目还提供了完整的训练流程,包括模型选择、损失函数定制以及GPU训练等,便于用户自定义和并行训练多个模型。
3、项目及技术应用场景
ARU-Net在历史文档处理中的应用广泛,它可以:
- 文本行检测:帮助自动识别和区分文档中的每一条文本行。
- 页面分割:分析和标记出文档的不同区域,如标题、正文、注释等。
- 二值化:将文档图像转换成黑白形式,提高字符识别的准确性。
- 基线检测:为OCR(光学字符识别)提供准确的参考线。
这些功能对于图书馆、档案馆以及研究者进行大规模文档数字化和信息提取非常有帮助。
4、项目特点
ARU-Net的主要特性包括:
- 易用性:提供预训练模型和简单示例,快速启动推理测试。
- 灵活性:训练参数可调,适应不同的任务和数据集。
- 并行训练:支持特定GPU训练,可以在多GPU系统上平行训练多个模型。
- 验证机制:内置经典权重和EMA阴影权重验证,确保模型质量。
这个项目不仅适用于历史文档领域,其核心技术也可应用于其他需要像素级标注的任务,例如医学图像分割、遥感图像处理等。
要开始你的历史文档探索之旅,请按照项目README中的安装步骤操作,然后运行演示程序,体验ARU-Net的强大功能。如果你在文献分析或相关领域工作,那么这个项目绝对值得尝试。不要忘了,如果你从中受益或将其应用于自己的工作中,请引用相关的学术论文。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
668
154
Ascend Extension for PyTorch
Python
218
235
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
306
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
259
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
63
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
652
仓颉编程语言运行时与标准库。
Cangjie
141
876
仓颉编译器源码及 cjdb 调试工具。
C++
133
866