ARU-Net使用教程
2024-08-30 01:34:26作者:虞亚竹Luna
项目目录结构及介绍
ARU-Net项目是一个针对历史文献布局分析的神经像素标注工具,其核心是ARU-Net模型,一个在文本行检测任务中扩展版的U-Net模型。以下是该项目的基本目录结构和关键文件说明:
- /: 项目根目录。
- demo_images: 包含示例图像,用于演示目的。
- demo_nets: 可能包含演示网络相关的文件或配置。
- pix_lab: 核心代码所在目录,包括训练和验证脚本。
- main: 存放主要的执行脚本如
train_aru.py(用于训练)和validate_ckpt.py(用于验证模型)。 - data_provider: 数据处理相关代码,定义数据集加载和预处理逻辑。
- cost: 定义损失函数的文件。
- optimizer: 优化器设置相关文件。
- main: 存放主要的执行脚本如
- LICENSE: 许可证文件,遵循GPL-2.0许可协议。
- README.md: 项目的主要说明文档。
- run_demo_inference.py: 运行推理演示的脚本。
项目的启动文件介绍
主要启动文件:run_demo_inference.py
这个脚本用于运行模型的推理过程,快速展示如何利用已训练好的模型对新图像进行预测。执行此脚本之前,确保你已经拥有模型的权重文件或已经完成了训练过程。
训练脚本:pix_lab/main/train_aru.py
这是进行模型训练的关键脚本。你需要根据实际需求调整参数,包括数据路径、输出类别数量以及其他的训练参数。通过命令行运行该脚本即可开始训练过程,例如:
python -u pix_lab/main/train_aru.py &> info.log
这条命令将标准输出和错误输出重定向到info.log文件中,便于追踪训练过程中的详细信息。
项目的配置文件介绍
虽然项目描述中没有明确指出独立的配置文件,但配置主要是通过修改train_aru.py脚本或其他相关脚本(如数据提供器和优化器脚本)中的参数来实现的。你需要直接在这些脚本内进行参数设置,比如调整学习率、批次大小、数据增强策略等。这种方式要求用户直接编辑代码来配置,而不是依赖于外部的JSON或YAML配置文件。
在实施前,请确保理解每项参数的意义,并根据你的实验需求进行适当的修改。此外,了解数据集的组织方式对于正确配置数据提供器至关重要,这通常涉及指定数据路径和标签路径等信息。
这个项目虽然目前可能不再维护,但仍提供了足够的信息和脚本,以引导用户进行历史文献布局分析的相关研究和应用。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Jetson TX2开发板官方资源完全指南:从入门到精通 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.71 K
仓颉编译器源码及 cjdb 调试工具。
C++
123
759
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
598
132
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
616
Ascend Extension for PyTorch
Python
141
170
仓颉编程语言命令行工具,包括仓颉包管理工具、仓颉格式化工具、仓颉多语言桥接工具及仓颉语言服务。
C++
55
737
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
634
232