ChatGLM3微调过程中的常见问题及解决方案
问题背景
在使用ChatGLM3进行p-tuning-v2微调时,许多开发者遇到了相似的错误。这些错误主要与环境配置和库版本兼容性有关,特别是transformers库的版本问题。本文将详细分析这些问题的根源,并提供有效的解决方案。
主要错误现象
在微调过程中,开发者通常会遇到以下两类典型错误:
-
BatchEncoding转换错误:表现为
BatchEncoding.to() got an unexpected keyword argument 'non_blocking'
,最终导致'NoneType' object has no attribute 'to'
错误。 -
TrainerState初始化错误:表现为
TrainerState.__init__() got an unexpected keyword argument 'stateful_callbacks'
,通常发生在尝试从检查点恢复训练时。
问题原因分析
BatchEncoding转换错误
这个问题的根本原因是transformers库版本过高(如4.41.1)与ChatGLM3微调代码不兼容。新版本的transformers对BatchEncoding类的处理方式发生了变化,导致在设备转换时出现参数不匹配的问题。
TrainerState初始化错误
这个问题同样源于版本不兼容,当transformers库版本降得过低时(如4.40.0),虽然解决了第一个问题,但又会导致新的API不兼容问题。这是因为不同版本的transformers对TrainerState类的初始化参数要求不同。
解决方案
针对BatchEncoding转换错误
推荐方案:将transformers库版本降级到4.40.0版本。这个版本经过验证能够解决BatchEncoding相关的转换问题,同时保持较好的稳定性。
安装命令:
pip install transformers==4.40.0
针对TrainerState初始化错误
如果降级到4.40.0后出现TrainerState初始化错误,可以考虑以下两种方案:
-
使用中间版本:尝试使用transformers 4.40.1或4.40.2版本,这些版本可能同时解决了两个问题。
-
修改微调代码:如果必须使用特定版本,可以修改微调代码中与TrainerState相关的部分,移除stateful_callbacks参数。
环境配置建议
为了获得最佳的微调体验,建议建立如下的Python环境配置:
- Python版本:3.8-3.10(3.11可能存在兼容性问题)
- PyTorch版本:与CUDA版本匹配的稳定版本
- Transformers版本:4.40.0-4.40.2
- CUDA版本:根据显卡选择11.7或11.8
其他注意事项
-
硬件资源:虽然Colab Pro提供了较好的硬件资源,但仍需注意显存限制。对于ChatGLM3-6B模型,建议至少有24GB显存进行微调。
-
数据预处理:确保输入数据格式正确,特别是当使用自定义数据集时,要遵循ChatGLM3要求的格式。
-
日志监控:训练过程中密切关注日志输出,特别是loss变化情况,这有助于早期发现问题。
总结
ChatGLM3微调过程中的常见问题多源于环境配置不当,特别是transformers库的版本问题。通过合理控制库版本和环境配置,大多数问题都能得到有效解决。建议开发者在开始微调前,先建立一个干净的环境,并严格按照推荐的版本进行配置,这样可以避免许多不必要的问题。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~058CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









