ChatGLM3微调过程中的常见问题及解决方案
问题背景
在使用ChatGLM3进行p-tuning-v2微调时,许多开发者遇到了相似的错误。这些错误主要与环境配置和库版本兼容性有关,特别是transformers库的版本问题。本文将详细分析这些问题的根源,并提供有效的解决方案。
主要错误现象
在微调过程中,开发者通常会遇到以下两类典型错误:
-
BatchEncoding转换错误:表现为
BatchEncoding.to() got an unexpected keyword argument 'non_blocking',最终导致'NoneType' object has no attribute 'to'错误。 -
TrainerState初始化错误:表现为
TrainerState.__init__() got an unexpected keyword argument 'stateful_callbacks',通常发生在尝试从检查点恢复训练时。
问题原因分析
BatchEncoding转换错误
这个问题的根本原因是transformers库版本过高(如4.41.1)与ChatGLM3微调代码不兼容。新版本的transformers对BatchEncoding类的处理方式发生了变化,导致在设备转换时出现参数不匹配的问题。
TrainerState初始化错误
这个问题同样源于版本不兼容,当transformers库版本降得过低时(如4.40.0),虽然解决了第一个问题,但又会导致新的API不兼容问题。这是因为不同版本的transformers对TrainerState类的初始化参数要求不同。
解决方案
针对BatchEncoding转换错误
推荐方案:将transformers库版本降级到4.40.0版本。这个版本经过验证能够解决BatchEncoding相关的转换问题,同时保持较好的稳定性。
安装命令:
pip install transformers==4.40.0
针对TrainerState初始化错误
如果降级到4.40.0后出现TrainerState初始化错误,可以考虑以下两种方案:
-
使用中间版本:尝试使用transformers 4.40.1或4.40.2版本,这些版本可能同时解决了两个问题。
-
修改微调代码:如果必须使用特定版本,可以修改微调代码中与TrainerState相关的部分,移除stateful_callbacks参数。
环境配置建议
为了获得最佳的微调体验,建议建立如下的Python环境配置:
- Python版本:3.8-3.10(3.11可能存在兼容性问题)
- PyTorch版本:与CUDA版本匹配的稳定版本
- Transformers版本:4.40.0-4.40.2
- CUDA版本:根据显卡选择11.7或11.8
其他注意事项
-
硬件资源:虽然Colab Pro提供了较好的硬件资源,但仍需注意显存限制。对于ChatGLM3-6B模型,建议至少有24GB显存进行微调。
-
数据预处理:确保输入数据格式正确,特别是当使用自定义数据集时,要遵循ChatGLM3要求的格式。
-
日志监控:训练过程中密切关注日志输出,特别是loss变化情况,这有助于早期发现问题。
总结
ChatGLM3微调过程中的常见问题多源于环境配置不当,特别是transformers库的版本问题。通过合理控制库版本和环境配置,大多数问题都能得到有效解决。建议开发者在开始微调前,先建立一个干净的环境,并严格按照推荐的版本进行配置,这样可以避免许多不必要的问题。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00