QS Ledger 开源项目教程
1. 项目介绍
QS Ledger 是一个个人数据聚合器和数据分析工具,专为自我追踪者和量化自我爱好者设计。该项目的主要目标有两个:
- 从各种追踪服务(如 Apple Health、Fitbit、Google Calendar 等)下载所有个人数据并本地存储。
- 提供个人数据分析、数据可视化和个人数据仪表盘的起点。
QS Ledger 使用 Python 3 编写,并通过 Jupyter Notebooks 共享和分发。它依赖于 Pandas、NumPy 等数据处理库,以及 Matplotlib 和 Seaborn 等数据可视化库。
2. 项目快速启动
2.1 安装和设置
首先,推荐使用 Anaconda 发行版来获取本地工作的 Numpy、Pandas、Jupyter Notebook 等 Python 数据科学工具。
2.1.1 安装 Anaconda
访问 Anaconda 官网 下载并安装 Anaconda。
2.1.2 创建虚拟环境
python3 -m venv ~/virtualenvs/qs_ledger
source ~/virtualenvs/qs_ledger/bin/activate
2.1.3 克隆项目
git clone https://github.com/markwk/qs_ledger.git
cd qs_ledger
2.1.4 安装依赖
pip install -r requirements.txt
2.1.5 启动 Jupyter Notebook
jupyter lab
2.2 使用示例
以下是一个简单的示例,展示如何从 Apple Health 下载数据并进行分析。
# 导入必要的库
import pandas as pd
from qs_ledger.apple_health import AppleHealthDownloader
# 初始化下载器
downloader = AppleHealthDownloader()
# 下载数据
data = downloader.download_data()
# 数据分析
data['steps'].plot(kind='line')
3. 应用案例和最佳实践
3.1 个人健康数据分析
通过 QS Ledger,用户可以轻松下载和分析来自 Apple Health 的健康数据,如步数、睡眠、心率等。这有助于用户更好地了解自己的健康状况,并制定相应的改善计划。
3.2 时间管理和生产力分析
使用 RescueTime 和 Toggl 等工具的数据,用户可以分析自己的电脑使用情况和时间管理效率。通过可视化数据,用户可以识别时间浪费的领域,并采取措施提高生产力。
3.3 阅读和学习分析
通过 GoodReads 和 Kindle 等工具的数据,用户可以分析自己的阅读习惯和学习进度。这有助于用户制定更有效的学习计划,并跟踪自己的知识积累。
4. 典型生态项目
4.1 Elasticsearch 和 Kibana
QS Ledger 支持将 Apple Health 数据导入 Elasticsearch,并使用 Kibana 创建动态健康仪表盘。这为用户提供了一个强大的工具,用于深入分析和可视化健康数据。
4.2 Plotly 和 Dash
QS Ledger 提供了使用 Plotly 和 Dash 进行数据可视化的示例代码。用户可以通过这些工具创建交互式数据可视化,从而更直观地理解自己的数据。
4.3 IFTTT 集成
通过 Google Sheets 和 IFTTT 的集成,用户可以将各种数据源的数据自动导入 Google Sheets,并通过 QS Ledger 进行分析。这为用户提供了一个灵活的方式来整合和管理个人数据。
通过以上步骤,您可以快速启动并使用 QS Ledger 进行个人数据聚合和分析。希望这个教程能帮助您更好地利用这个强大的开源工具。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C050
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00